Error bounds for numerical differentiation using kernels of finite smoothness

O.V. Davydov (Justus Liebig University Giessen), https://orcid.org/0000-0001-8813-9485

Abstract


We provide improved error bounds for kernel-based numerical differentiation in terms of growth functions when kernels are of a finite smoothness, such as polyharmonic splines, thin plate splines or Wendland kernels. In contrast to existing literature, the new estimates take into account the Hölder class smoothness of kernel's derivatives, which helps to improve the order of the estimate. In addition, the new estimates apply to certain deficient point sets, relaxing a standard assumption that an approximation with conditionally positive definite kernels must rely on determining sets for polynomials.

Keywords


numerical differentiation; meshless methods; kernel-based method; growth function; deficient sets; polyharmonic splines; thin plate splines; Wendland kernels

MSC 2020


Pri 65D25, Sec 65D12, 41A30, 41A80, 41A63

Full Text:

PDF

References


Bayona V., Flyer N., Fornberg B., Barnett G.A. "On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs", J. Comp. Phys., 2017; 332: pp. 257-273. doi:10.1016/j.jcp.2016.12.008

Buhmann M.D. Radial basis functions, Cambridge Univ. Press, 2003. doi:10.1017/CBO9780511543241

Davydov O. "Approximation with conditionally positive definite kernels on deficient sets", Approx. Theory XVI: Nashville 2019, ed. by Gregory M.N., Fasshauer E., Schumaker L.L. Springer, 2021; pp. 27-38. doi:10.1007/978-3-030-57464-2_3

Davydov O., Schaback R. "Error bounds for kernel-based numerical differentiation", Numer. Math., 2016; 132(2): pp. 243-269. doi:10.1007/s00211-015-0722-9

Davydov O., Schaback R. "Minimal numerical differentiation formulas", Numer. Math., 2018; 140(3): pp. 555-592. doi:10.1007/s00211-018-0973-3

Fasshauer G. Meshfree approximation methods with MATLAB, World Sci. Publ., 2007. doi:10.1142/6437

Fornberg B., Flyer N. "A primer on radial basis functions with applications to the Geosciences", SIAM, 2015. doi:10.1137/1.9781611974041

Schaback R. "Native Hilbert spaces for radial basis functions I", New Devel. in Approx. Theory: 2nd Int. Dortmund Meet. (IDoMAT), Germany, 1998, ed. by Müller M.W., Buhmann M.D., Mache D.H., Felten M. Basel, 1999; pp. 255-282.

Wendland H. Scattered Data Approximation, Cambridge Univ. Press, 2004. doi:10.1017/CBO9780511617539




DOI: https://doi.org/10.15421/242514

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 O.V. Davydov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU