Error bounds for numerical differentiation using kernels of finite smoothness
Abstract
Keywords
MSC 2020
Full Text:
PDFReferences
Bayona V., Flyer N., Fornberg B., Barnett G.A. "On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs", J. Comp. Phys., 2017; 332: pp. 257-273. doi:10.1016/j.jcp.2016.12.008
Buhmann M.D. Radial basis functions, Cambridge Univ. Press, 2003. doi:10.1017/CBO9780511543241
Davydov O. "Approximation with conditionally positive definite kernels on deficient sets", Approx. Theory XVI: Nashville 2019, ed. by Gregory M.N., Fasshauer E., Schumaker L.L. Springer, 2021; pp. 27-38. doi:10.1007/978-3-030-57464-2_3
Davydov O., Schaback R. "Error bounds for kernel-based numerical differentiation", Numer. Math., 2016; 132(2): pp. 243-269. doi:10.1007/s00211-015-0722-9
Davydov O., Schaback R. "Minimal numerical differentiation formulas", Numer. Math., 2018; 140(3): pp. 555-592. doi:10.1007/s00211-018-0973-3
Fasshauer G. Meshfree approximation methods with MATLAB, World Sci. Publ., 2007. doi:10.1142/6437
Fornberg B., Flyer N. "A primer on radial basis functions with applications to the Geosciences", SIAM, 2015. doi:10.1137/1.9781611974041
Schaback R. "Native Hilbert spaces for radial basis functions I", New Devel. in Approx. Theory: 2nd Int. Dortmund Meet. (IDoMAT), Germany, 1998, ed. by Müller M.W., Buhmann M.D., Mache D.H., Felten M. Basel, 1999; pp. 255-282.
Wendland H. Scattered Data Approximation, Cambridge Univ. Press, 2004. doi:10.1017/CBO9780511617539
DOI: https://doi.org/10.15421/242514
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 O.V. Davydov

This work is licensed under a Creative Commons Attribution 4.0 International License.











