On the analytical continuation of the ratio $$$H_4(\alpha,\delta+1;\gamma,\delta;-\mathbf{z})/H_4(\alpha,\delta+2;\gamma,\delta+1;-\mathbf{z})$$$

R. Dmytryshyn (Vasyl Stefanyk Precarpathian National University), https://orcid.org/0000-0003-2845-0137
C. Cesarano (International Telematic University UNINETTUNO), https://orcid.org/0000-0002-1694-7907
I.-A. Lutsiv (Vasyl Stefanyk Precarpathian National University), https://orcid.org/0000-0002-4100-2972

Abstract


The paper considers the problem of analytical continuation of special functions by branched continued fractions. These representations  play an important role in approximating of special functions that arise in various applied  problems. By improving the methods of studying the convergence of branched continued fractions, several domains of analytical continuation of the special function $$$H_4(\alpha,\delta+1;\gamma,\delta;-\mathbf{z})/H_4(\alpha,\delta+2;\gamma,\delta+1;-\mathbf{z})$$$ in the case of real and complex parameters are established. To prove the analytical continuation, the so-called PC method is used, which is based on the principle of correspondence between a formal double power series and a branched continued fraction. An example is provided at the end.

Keywords


hypergeometric function; branched continued fraction; analytic function; approximation by rational functions; convergence; analytic continuation

MSC 2020


Pri 33C65, Sec 32A17, 41A20, 32A10, 40A99, 30B40

Full Text:

PDF

References


Abramowitz M., Stegun I.A. Handbook of mathematical functions with formulas, graphs and mathematical tables, U.S. Gov. Print. Office, NBS, 1964.

Antonova T., Cesarano C., Dmytryshyn R., Sharyn S. "An approximation to Appell's hypergeometric function $$$F_2$$$ by branched continued fraction", Dolomites Res. Notes Approx., 2024; 17(1): pp. 22-31. doi:10.14658/PUPJ-DRNA-2024-1-3

Antonova T., Dmytryshyn R., Lutsiv I.-A., Sharyn S. "On some branched continued fraction expansions for Horn's hypergeometric function $$$H_4(a,b;c,d;z_1,z_2)$$$ ratios", Axioms, 2023; 12(3): 299. doi:10.3390/axioms12030299

Antonova T., Dmytryshyn R., Sharyn S. "Branched continued fraction representations of ratios of Horn's confluent function $\mathrm{H}_6$", Constr. Math. Anal., 2023; 6(1): pp. 22-37. doi:10.33205/cma.1243021

Antonova T., Dmytryshyn R., Sharyn S. "Generalized hypergeometric function $$${}_3F_2$$$ ratios and branched continued fraction expansions", Axioms, 2021; 10(4): p. 310. doi:10.3390/axioms10040310

Antonova T. "On structure of branched continued fractions", Carpathian Math. Publ., 2024; 16(2): pp. 391-400. doi:10.15330/cmp.16.2.391-400

Bodnar D.I., Bodnar O.S., Bilanyk I.B. "A truncation error bound for branched continued fractions of the special form on subsets of angular domains", Carpathian Math. Publ., 2023; 15(2): pp. 437-448. doi:10.15330/cmp.15.2.437-448

Bodnar D.I., Bodnar O.S., Dmytryshyn M.V., Popov M.M., Martsinkiv M.V., Salamakha O.B. "Research on the convergence of some types of functional branched continued fractions", Carpathian Math. Publ., 2024; 16(2): pp. 448-460. doi:10.15330/cmp.16.2.448-460

Brychkov Yu.A., Savischenko N.V. "On some formulas for the Horn functions $$$H_4(a,b;c,c';w,z)$$$ and $$$H_7^{(c)}(a;c,c';w,z)$$$", Integr. Transf. Spec. Func., 2021; 32(2): pp. 969-987. doi:10.1080/10652469.2021.1878356

Dmytryshyn M., Goran T., Rusyn R. "Videoconferencing Platforms in Ukrainian Education: Facts and Prospects", in Proc. 2025 15th Int. Conf. Adv. Comp. Inform. Tech. (ACIT), Sibenik, Croatia, September 17-19, 2025, pp. 1055-1058. doi:10.1109/ACIT65614.2025.11185589

Dmytryshyn M., Hladun V. "On the sets of stability to perturbations of some continued fraction with applications", Symmetry, 2025; 17(9): 1442. doi:10.3390/sym17091442

Dmytryshyn R., Antonova T., Dmytryshyn M. "On the analytic extension of the Horn's confluent function $$$\mathrm{H}_6$$$ on domain in the space $$$\mathbb{C}^2$$$", Constr. Math. Anal., 2024; 7: pp. 11-26. doi:10.33205/cma.1545452

Dmytryshyn R., Cesarano C., Dmytryshyn M., Lutsiv I.-A. "A priori bounds for truncation error of branched continued fraction expansions of Horn's hypergeometric functions $$$H_4$$$ and their ratios", Res. Math., 2025; 33(1): pp. 13-22. doi:10.15421/242502

Dmytryshyn R., Cesarano C., Lutsiv I.-A., Dmytryshyn M. "Numerical stability of the branched continued fraction expansion of Horn's hypergeometric function $$$H_4$$$", Mat. Stud., 2024; 61(1): pp. 51-60. doi:10.30970/ms.61.1.51-60

Dmytryshyn R., Goran V. "On the analytic extension of Lauricella-Saran's hypergeometric function $$$F_K$$$ to symmetric domains", Symmetry, 2024; 16(2): p. 220. doi:10.3390/sym16020220

Dmytryshyn R., Lutsiv I.-A., Bodnar O. "On the domains of convergence of the branched continued fraction expansion of ratio $$$H_4(a,d+1;c,d;\mathbf{z})/H4(a,d+2;c,d+1;\mathbf{z})$$$", Res. Math., 2023; 31(2): pp. 19-26. doi:10.15421/242311

Dmytryshyn R., Lutsiv I.-A., Dmytryshyn M., Cesarano C. "On some domains of convergence of branched continued fraction expansions of the ratios of Horn hypergeometric functions $$$H_4$$$", Ukrainian Math. J., 2024; 76: pp. 559-565. doi:10.1007/s11253-024-02338-3

Dmytryshyn R., Lutsiv I.-A., Dmytryshyn M. "On the analytic extension of the Horn's hypergeometric function $$$H_4$$$", Carpathian Math. Publ., 2024; 16(1): pp. 32-39. doi:10.15330/cmp.16.1.32-39

Dmytryshyn R., Nyzhnyk I. "On approximation of some Lauricella-Saran's hypergeometric functions $$$F_M$$$ and their ratios by branched continued fractions", Mat. Stud., 2025; 62(2): pp. 136-145. doi:10.30970/ms.63.2.136-145

Dmytryshyn R. "On the analytic continuation of Appell's hypergeometric function $$$F_2$$$ to some symmetric domains in the space $$$\mathbb{C}^2$$$" Symmetry, 2024; 16(11): 1480. doi:10.3390/sym16111480

Dmytryshyn R. "Truncation error bounds for branched continued fraction expansions of some Appell's hypergeometric functions $$$F_2$$$", Symmetry, 2025; 17(8): 1204. doi:10.3390/sym17081204

Hang P.-C., Henkel M., Luo M.-J. "Asymptotics of the Humbert functions $$$\Psi_1$$$ and $$$\Psi_2$$$", J. Approx. Theory, 2025; 106233. doi:10.1016/j.jat.2025.106233

Hang P.-C., Luo M.-J. "Asymptotics of Saran's hypergeometric function $$$F_K$$$", J. Math. Anal. Appl., 2025; 541(2): 128707. doi:10.1016/j.jmaa.2024.128707

Hladun V.R., Bodnar D.I., Rusyn R.S. "Convergence sets and relative stability to perturbations of a branched continued fraction with positive elements", Carpathian Math. Publ., 2024; 16(1): pp. 16-31. doi:10.15330/cmp.16.1.16-31

Hladun V.R., Dmytryshyn M.V., Kravtsiv V.V., Rusyn R.S. "Numerical stability of the branched continued fraction expansions of the ratios of Horn's confluent hypergeometric functions $$$\mathrm{H}_6$$$" Math. Model. Comput., 2024; 11(4): pp. 1152-1166. doi:10.23939/mmc2024.04.1152

Hladun V.R., Hoyenko N.P., Manzij O.S., Ventyk L. "On convergence of function $$$F_4(1, 2; 2, 2; z_1, z_2)$$$ expansion into a branched continued fraction", Math. Model. Comput., 2022; 9(3): pp. 767-778. doi:10.23939/mmc2022.03.767

Hladun V., Kravtsiv V., Dmytryshyn M., Rusyn R. "On numerical stability of continued fractions", Mat. Stud., 2024; 62(2): pp. 168-183. doi:10.30970/ms.62.2.168-183

Hladun V., Rusyn R., Dmytryshyn M. "On the analytic extension of three ratios of Horn's confluent hypergeometric function $$$\mathrm{H}_7$$$", Res. Math., 2024; 32(1): pp. 60-70. doi:10.15421/242405

Horn J. "Hypergeometrische funktionen zweier veränderlichen", Math. Ann., 1931; 105(1): pp. 381-407. (in German) doi:10.1007/BF01455825

Jones W.B., Thron W.J. Continued fractions: analytic theory and applications, Addison-Wesley Pub. Co., 1980.

Kaliuzhnyi-Verbovetskyi D., Pivovarchik V. "Recovering the shape of a quantum caterpillar tree by two spectra", Mech. Math. Methods, 2023; 5(1): pp. 14-24. doi:10.31650/2618-0650-2023-5-1-14-24

Kaminsky A.A., Selivanov M.F. "On the application of branched operator continued fractions for a boundary problem of linear viscoelasticity", Int. Appl. Mech., 2006; 42: pp. 115-126. doi:10.1007/s10778-006-0066-3

Lutsiv Y., Antonova T., Dmytryshyn R., Dmytryshyn M. "On the branched continued fraction expansions of the complete group of ratios of the generalized hypergeometric function $$$_4F_3$$$", Res. Math., 2024; 32(2): pp. 115-132. doi:10.15421/242423

Nyzhnyk I., Dmytryshyn R., Antonova T. "On branched continued fraction expansions of hypergeometric functions $$$F_M$$$ and their ratios", Modern Math. Methods, 2025; 3(1): pp. 1-13. doi:10.64700/mmm.52

Parmar R.K., Choi J., Saravanan S. "Extended Exton's triple and Horn's double hypergeometric functions and associated bounding inequalities", Symmetry, 2023; 15(6): 1132. doi:10.3390/sym15061132

Petreolle P., Sokal A.D., Zhu B.X. "Lattice paths and branched continued fractions: An infinite sequence of generalizations of the Stieltjes-Rogers and Thron-Rogers polynomials, with coefficient wise Hankel-total positivity", arXiv, 2020. arXiv:1807.03271

Pinti A., Tulai O., Chaikovskyi Y., Stetsko M., Dmytryshyn M., Alekseyenko L. "International Communication and Innovation in Investment in Flagship, Mortgage and Social Projects to Guarantee Security and Minimize Risks of Public Finances", in: Hamdan R.K. (ed.) Integrating Big Data and IoT for Enhanced Decision-Making Systems in Business, Studies in Big Data, 177. Springer, Cham, 2026. doi:10.1007/978-3-031-97609-4_35


Bodnar D.I. Branched Continued Fractions, Naukova Dumka, 1986.




DOI: https://doi.org/10.15421/242515

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 R. Dmytryshyn, C. Cesarano, I.-A. Lutsiv

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU