Equivalence between various Shape Preserving Approximations of periodic functions

D. Leviatan (Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University), https://orcid.org/0000-0003-0180-5065
O.V. Motorna (Taras Shevchenko National University of Kyiv), https://orcid.org/0009-0003-4963-3239
I.O. Shevchuk (Taras Shevchenko National University of Kyiv), https://orcid.org/0000-0003-1140-373X

Abstract


We show that the validity of Jackson-type estimates in comonotone and coconvex approximations of continuous $$$2\pi$$$-periodic functions by trigonometric polynomials is equivalent to the validity of the corresponding estimates of approximation by continuous $$$2\pi$$$-periodic piecewise algebraic polynomials with equidistant knots, having a minor additional property.

Keywords


shape preserving approximation; trigonometric polynomial; Jackson; comonotone; coconvex; piecewise polynomial

MSC 2020


Pri 42A05, Sec 42A10, 41A17, 41A25, 41A29

Full Text:

PDF

References


Dzyubenko H.A. "Comonotone approximation of twice differentiable periodic functions", Ukrainian Math. J., 2009; 61: pp. 519-540. doi:10.1007/s11253-009-0235-8

Dzyubenko G.A., Pleshakov M.G. "Comonotone approximation of periodic functions", Math. Notes, 2008; 83: pp. 180-189. doi:10.1134/S0001434608010203

Dzyubenko G., Voloshyna V., Yushchenko L. "Negative results in coconvex approximation of periodic functions", J. Approx. Theory, 2021; 267: 105582. doi:10.1016/j.jat.2021.105582

Kopotun K.A. "Pointwise and uniform estimates for convex approximation of functions by algebraic polynomials", Constr. Approx., 1994; 10: pp. 153-178. doi:10.1007/BF01263061

Kopotun K.A., Leviatan D., Shevchuk I.A. "The degree of coconvex polynomial approximation", Proc. Amer. Math. Soc., 1999; 127: pp. 409-415. doi:10.1090/S0002-9939-99-04452-4

Leviatan D., Shchehlov M.V., Shevchuk I.O. "Comonotone approximation of periodic functions", J. Approx. Theory, 2024; 299: 106015. doi:10.1016/j.jat.2024.106015

Leviatan D., Shevchuk I.A. "Coconvex approximation of periodic functions", Constr. Approx., 2023; 57: pp. 695-726. doi:10.1007/s00365-022-09597-y

Leviatan D., Shevchuk I.O. "Shape preserving approximation of periodic functions: Conclusion", Constr. Approx., 2025; 62: pp. 591-612. doi:10.1007/s00365-024-09695-z

Popov P.A. "An analog of the Jackson inequality for coconvex approximation of periodic functions", Ukrainian Math. J., 2001; 53: pp. 1093-1105. doi:10.1023/A:1013325131321

Zalizko V.D. "Coconvex approximation of periodic functions", Ukrainian Math. J., 2007; 59: pp. 28-44. doi:10.1007/s11253-007-0003-6




DOI: https://doi.org/10.15421/242518

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 D. Leviatan, O.V. Motorna, I.O. Shevchuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU