The best $$$m$$$-term trigonometric approximations of the classes of periodic multivariate functions of mixed smoothness
Abstract
Keywords
MSC 2020
Full Text:
PDFReferences
Belinskii E.S. "Approximation by a “floating” system of exponentials on classes of smooth periodic functions", English transl. in: Math. Sb. ussr, 1988; 60 (1): pp. 19-27.
Belinskii E.S. "Approximation by a “floating” system of exponentials on classes of periodic functions with bounded mixed derivative", In: Studies in the theory of functions of several real variables, in: Mathematics, 1988: pp. 16-33.
Belinsky E.S. "Estimates of entropy numbers and Gaussian measures for classes of functions with bounded mixed derivative", J. Approx. Theory, 1998; 93(1): pp. 114-127. doi:10.1006/jath.1997.3157
DeVore R.A., Temlyakov V.N. "Nonlinear approximation by trigonometric sums", J. Fourier Anal. Appl., 1995; 2(1): pp. 29-48. doi:10.1007/s00041-001-4021-8
Dũng D. "Continuous algorithms in n-term approximation and non-linear width", J. Approx. Theory, 2000; 102(2): pp. 217-242. doi:10.1006/jath.1999.3399
Dũng D., Temlyakov V., Ullrich T. Hyperbolic cross approximation, Adv. Courses Math. Birkhäuser, CRM Barselona, 2018. doi:10.1007/978-3-319-92240-9
Fedunyk-Yaremchuk O.V., Hembars'kyi M.V., Hembars'ka S.B. "Approximative characteristics of the Nikol'skii-Besov-type classes of periodic functions in the space $$$B_{\infty,1}$$$", Carpathian Math. Publ., 2020; 12(2): pp. 376-391. doi:10.15330/cmp.12.2.376-391
Hansen M., Sickel W. "Best m-term approximation and Sobolev-Besov spaces of dominating mixed smoothness — the case of compact embeddings", Constr. Approx., 2012; 36(1): pp. 1-51. doi:10.1007/s00365-012-9161-3
Kashin B.S., Temlyakov V.N. "On best m-term approximations and the entropy of sets in the space $$$L^1$$$", English transl. in: Math. Notes, 1994; 56(5): pp. 1137-1157. doi:10.1007/BF02274662
Lizorkin P.I., Nikol'skii S.M. "Function spaces of mixed smoothness from the decomposition point of view", Proc. Stekl. Inst. Math., 1990; 187: pp. 163-184.
Moeller M., Stasyuk S., Ullrich T. "High-dimensional sparse trigonometric approximation in the uniform norm and consequences for sampling recovery", 2024. arXiv:2407.15965
Nguyen V.K., Nguyen V.D. "Best n-term approximation of diagonal operators and application to function spaces with mixed smoothness", Anal. Math., 2022; 48(4): pp. 1127-1152. doi:10.1007/s10476-022-0169-z
Nikol'skii S.M. Approximation of functions of several variables and imbedding theorems, Springer-Verlag, 1975.
Pozharska K.V., Romanyuk A.S. "The best $$$m$$$-term trigonometric approximations of the classes of periodic functions of one and many variables in the space $$$B_{q,1}$$$", Res. Math., 2024; 32(2): pp. 137-154. doi:10.15421/242425
Romanyuk A.S. "Best M-term trigonometric approximations of Besov classes of periodic functions of several variables", English transl. in: Izv. Math., 2003; 67(2): pp. 265-302. doi:10.1070/IM2003v067n02ABEH000427
Romanyuk A.S. "Bilinear and trigonometric approximations of periodic functions of several variables of Besov classes $$$B^r_{p, \theta}$$$", English transl. in: Izv. Math., 2006; 70(2): pp. 277-306. doi:10.1070/IM2006v070n02ABEH002313
Romanyuk A.S. "Best trigonometric approximations for some classes of periodic functions of several variables in the uniform metric", English transl. in: Math. Notes, 2007; 82(2): pp. 216-228. doi:10.1134/S0001434607070279
Romanyuk A.S. "Approximating characteristics of the classes of periodic functions of many variables", In: Proc. Inst. Math. Nat. Acad. Sci. Ukraine, 2012; 93.
Romanyuk A.S. "Entropy numbers and widths for the classes $$$B^r_{p,\theta}$$$ of periodic functions of many variables". Ukrainian Math. J., 2017; {68}(10): pp. 1620-1636. doi:10.1007/s11253-017-1315-9
Romanyuk A.S., Romanyuk V.S. "Approximating characteristics of the classes of periodic multivariate functions in the space $$$B_{\infty,1}$$$", Ukrainian Math. J., 2019; 71(2): pp. 308-321. doi:10.1007/s11253-019-01646-3
Romanyuk A.S., Romanyuk V.S. "Estimation of some approximating characteristics of the classes of periodic functions of one and many variables", Ukrainian Math. J., 2020; 71(8): pp. 1257-1272. doi:10.1007/s11253-019-01711-x
Romanyuk A.S., Romanyuk V.S., Pozharska K.V., Hembars'ka S.B. "Characteristics of linear and nonlinear approximation of isotropic classes of periodic multivariate functions", Carpathian Math. Publ., 2023; 15(1): pp. 78-94. doi:10.15330/cmp.15.1.78-94
Romanyuk A.S., Yanchenko S.Ya. "Estimates of approximating characteristics and the properties of the operators of best approximation for the classes of periodic functions in the space $$$B_{1,1}$$$", Ukrainian Math. J., 2022; 73(8): pp. 1278-1298. doi:10.1007/s11253-022-01990-x
Shvai K.V. "The best m-term trigonometric approximations of the classes of periodic multivariate functions with bounded generalized derivative in the space $$$L_q$$$", English transl. in: J. Math. Sci., 2017; 222: pp. 750-761. doi:10.1007/s10958-017-3329-0
Stasyuk S.A. "Best m-term trigonometric approximation of periodic functions of several variables from Nikol'skii-Besov classes for small smoothness", J. Approx. Theory, 2014; 177: pp. 1-16. doi:10.1016/j.jat.2013.09.006
Temlyakov V.N. "Approximation of functions with bounded mixed derivative", Proc. Stekl. Inst. Math. 1989; 178: pp. 1-121.
Temlyakov V.N. "Constructive sparse trigonometric approximation for functions with small mixed smoothness", Constr. Approx., 2017; 45(3): pp. 467-495. doi:10.1007/s00365-016-9345-3
Temlyakov V.N. Multivariate approximation, Cambridge Univ. Press, 2018.
Temlyakov V.N., Ullrich T. "Approximation of functions with small mixed smoothness in the uniform norm", J. Approx. Theory, 2022; 277: 105718. doi:10.1016/j.jat.2022.105718
Trigub R.M., Belinsky E.S. Fourier Analysis and Approximation of functions, Kluwer-Springer, 2004. doi:10.1007/978-1-4020-2876-2
Akishev G.A. "On the exact estimations of the best M-term approximation of the Besov class", Sib. Elektron. Mat. Izv., 2010; 7: pp. 255-274.
Amanov T.I. "Representation and imbedding theorems for function spaces $$$S^{(r)}_{p,\theta}B(\mathbb{R}_n)$$$ and $$$S^{(r)_*}_{p,\theta}B$$$, ($$$0\leq x_j\leq 2\pi$$$; $$$j=1,\ldots,n$$$)", Tr. Mat. Inst. Stekl., 1965; 77: pp. 5-34.
Besov O.V. "Investigation of one family of functional spaces in connection with the embedding and continuation theorems", Tr. Mat. Inst. Acad. Nauk sssr, 1961; 60: pp. 42-81.
Nikol'skii S.M. "Inequalities for entire functions of finite power and their application to the theory of differentiable functions of many variables", Tr. Mat. Inst. Akad. Nauk sssr, 1951; 38: pp. 244-278.
Nikol'skii S.M. "Functions with dominant mixed derivative, satisfying a multiple Hölder condition". Sib. Mat. Zh., 1963; 4(6): pp. 1342-1364.
Stechkin S.B. "On absolute convergence of orthogonal series", Dokl. Akad. Nauk sssr, 1955; 102(2): pp. 37-40.
DOI: https://doi.org/10.15421/242520
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 K.V. Pozharska, A.S. Romanyuk

This work is licensed under a Creative Commons Attribution 4.0 International License.











