Estimates of deviations of Fourier sums on Weyl-Nagy classes $$$W^r_{\beta,1}$$$

A.S. Serdyuk (Institute of Mathematics of NAS of Ukraine), https://orcid.org/0000-0003-2659-8920
I.V. Sokolenko (Institute of Mathematics of NAS of Ukraine), https://orcid.org/0000-0002-8534-4616

Abstract


We establish estimates for exact upper bounds of deviations of partial Fourier sums $$$S_{n-1}(f)$$$ on classes $$$W^r_{\beta,1}, r>2, \beta\in\mathbb{R},$$$ of $$$2\pi$$$-periodic functions whose $$$(r,\beta)$$$-derivatives in the Weyl-Nagy sense belong to the unit ball of the space $$$L_1$$$. The specified estimates allow us to write asymptotic equalities for the quantities $$$\sup\limits_{f\in W^r_{\beta,1}}|f(x)-S_{n-1}(f;x)|$$$ as $$$n\rightarrow\infty$$$, $$$r\rightarrow\infty$$$ for arbitrary relations between the parameters $$$r$$$ and $$$n$$$.

Keywords


Fourier sum; Weil-Nagy class; asymptotic equality

MSC 2020


Pri 42A10

Full Text:

PDF

References


Babenko V.F., Pichugov S.A. "Best linear approximation of some classes of differentiable periodic functions", Math. Notes, 1980; 27(5): pp. 325-329. doi:10.1007/BF01139842

Gradshteyn I.S., Ryzhik I.M. Tables of integrals, series, and products, Academic Press, 2007.

Kolmogoroff A. "Zur Grössenordnung des Restgliedes Fourierscher Reihen differenzierbarer Funktionen", Ann. Math, 1935; 36(2): pp. 521-526. (in German) doi:10.2307/1968585

Lebesgue H. "Sur la représentation trigonométrique approchée des fonctions satisfaisant à une condition de Lipschitz", Bull. de la S. M. F., 1910; 38: pp. 184-210. (in French) doi:10.24033/bsmf.859

Motornyi V.P. "Approximation of periodic functions by trigonometric polynomials in the mean", Math. Notes, 1974; 16(1): pp. 592-599. doi:10.1007/BF01098809

Serdyuk A.S. "Approximation of classes of analytic functions by Fourier sums in the uniform metric", Ukrainian Math. J., 2005; 57(8): pp. 1275-1296. doi:10.1007/s11253-005-0261-0

Serdyuk A.S. "Approximation of classes of analytic functions by Fourier sums in the metric of the space $$$L_p$$$", Ukrainian Math. J., 2005; 57(10): pp. 1635-1651. doi:10.1007/s11253-006-0018-4

Serdyuk A.S., Sokolenko I.V. "Uniform approximation of classes of $$$(\psi,\bar\beta)$$$-differentiable functions by linear methods", Approximation Theory of Functions and Related Problems, Zb. prac’ Inst. mat. NAN Ukraine, Kyiv 2011; 8(1): pp. 181-189.

Serdyuk A.S., Sokolenko I.V. "Approximation by linear methods of classes of $$$(\psi,\bar\beta)$$$-differentiable functions", Approximation Theory of Functions and Related Problems, Zb. prac’ Inst. mat. NAN Ukraine, Kyiv 2013; 10(1): pp. 245-254.

Serdyuk A.S., Sokolenko I.V. "Approximation by Fourier sums in classes of differentiable functions with high exponents of smoothness", Meth. Func. Analys. Topol., 2019; 4: pp. 381-387.

Serdyuk A.S., Sokolenko I.V. "Asymptotic Estimates for the Best Uniform Approximations of Classes of Convolution of Periodic Functions of High Smoothness", J. Math. Sci., 2021; 252: pp. 526-540. doi:10.1007/s10958-020-05178-1

Serdyuk A.S., Sokolenko I.V. "Approximation by Fourier Sums in the Classes of Weyl-Nagy Differentiable Functions with High Exponent of Smoothness", Ukrainian Math. J. 2022; 74(5): pp. 783-800. doi:10.1007/s11253-022-02101-6

Serdyuk A.S., Stepanyuk T.A. "Uniform Approximations by Fourier Sums in Classes of Generalized Poisson Integrals", Analysis Math., 2019; 45(1): pp. 201-236. doi:10.1007/s10476-018-0310-1

Serdyuk A.S., Stepanyuk T.A. "Uniform approximations by Fourier sums on the sets of convolutions of periodic functions of high smoothness", Ukrainian Math. J., 2023; 75(4): pp. 542-567. doi:10.37863/umzh.v75i4.7411

Stepanets A.I. Classification and Approximation of Periodic Functions, Kluwer Acad. Publ., 1995. doi:10.1007/978-94-011-0115-8

Stepanets A.I. Methods of Approximation Theory, VSP, 2005. doi:10.1007/10.1515/9783110195286

Stechkin S.B. "Estimation of the remainder for the Fourier series for differentiable functions", Proc. Stekl. Inst. Math., 1980; 145: pp. 139-166.

Telyakovskii S.A. "Approximation of differentiable functions by partial sums of their Fourier series", Math. Notes, 1968; 4: pp. 668-673. doi:10.1007/BF01116445

Telyakovskii S.A. "Approximation of functions of high smoothness by Fourier sums", Ukrainian Math. J., 1989; 41(4): pp. 444-451. doi:10.1007/BF01060623


Nikol'skii S.M. "Approximation of functions in the mean by trigonometric polynomials", Izv. Akad. Nauk, Ser. Mat., 1946; 10: pp. 207-256.




DOI: https://doi.org/10.15421/242521

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 A.S. Serdyuk, I.V. Sokolenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU