Ground-state periodic traveling waves for Fermi-Pasta-Ulam-type systems on a two-dimensional lattice

S.M. Bak (Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University), https://orcid.org/0000-0003-1508-2144
H.M. Kovtoniuk (Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University), https://orcid.org/0000-0002-3352-0358

Abstract


The paper is devoted to the Fermi-Pasta-Ulam-type system describing an infinite system of nonlinearly coupled particles on a two-dimensional integer-valued lattice. Each particle is assumed to interact nonlinearly with its four nearest neighbors. This system forms an infinite system of ordinary differential equations and is representative of a wide class of systems called lattice dynamical systems, which have been extensively studied in recent decades. Among the solutions of such systems, traveling waves deserve special attention. The main result concerns the existence of ground-state periodic traveling wave solutions with periodic velocity profiles. It is important to note that the profiles of such waves are not necessarily periodic. The existence problem is reduced to a variational problem for an associated action functional. Using variational method, including the Mountain Pass Theorem and the Nehari manifold approach, we establish sufficient conditions for the existence of nonconstant ground-state periodic traveling waves.

Keywords


Fermi-Pasta-Ulam-type systems; two-dimensional lattice; periodic traveling waves; ground-state; mountain pass; Nehari manifold

MSC 2020


Pri 37K60, Sec 34A34, 74J30

Full Text:

PDF

References


Arioli G., Gazzola F. "Periodic motion of an infinite lattice of particles with nearest neighbor interaction", Nonlin. Anal., 1996; 26(6): pp. 1103-1114. doi:10.1016/0362-546X(94)00269-N

Aubry S. "Breathers in nonlinear lattices: Existence, linear stability and quantization", Physica D, 1997; 103: pp. 201-250. doi:10.1016/S0167-2789(96)00261-8

Bak S.M. Discrete infinite-dimensional Hamiltonian systems on a two-dimensional lattice: Doctor’s thesis, VSPU, 2020.

Bak S.M. "Existence of the solitary traveling waves for a system of nonlinearly coupled oscillators on the 2d-lattice", Ukrainian Math. J., 2017; 69(4): pp. 509-520. doi:10.1007/s11253-017-1378-7

Bak S. "Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D lattice", Arch. Math., 2022; 58(1): pp. 1-13. doi:10.5817/AM2022-1-1

Bak S. "Periodic traveling waves in a system of nonlinearly coupled nonlinear oscillators on a two-dimensional lattice", Acta Math. Univ. Comen., 2022; 91(3): pp. 225-234.

Bak S.M., Kovtonyuk G.M. "Existence of solitary traveling waves in Fermi-Pasta-Ulam system on 2D lattice", Mat. Stud., 2018; 50(1): pp. 75-87. doi:10.15330/ms.50.1.75-87

Bak S., Kovtonyuk G. "Existence of standing waves in DNLS with saturable nonlinearity on 2D lattice", Comm. Math. Analys., 2019; 22(2): pp. 18-34.

Bak S.M., Kovtonyuk G.M. "Existence of traveling waves in Fermi-Pasta-Ulam-type systems on 2D–lattice", J. Math. Sci., 2021; 252(4): pp. 453-462. doi:10.1007/s10958-020-05173-6

Bak S.M., Kovtonyuk G.M. "Existence of periodic traveling waves in Fermi-Pasta-Ulam-type systems on 2D-lattice with saturable nonlinearities", J. Math. Sci., 2022; 260(5): pp. 619-629. doi:10.1007/s10958-022-05715-0

Bak S.M., Kovtonyuk G.M. "Existence of traveling solitary waves in Fermi-Pasta-Ulam-type systems on 2D-lattice with saturable nonlinearities", J. Math. Sci., 2023; 270(3): pp. 397-406. doi:10.1007/s10958-023-06353-w

Bak S.M., Kovtoniuk H.M. "Exponential decay of solitary traveling wave solutions to the Fermi-Pasta-Ulam-type systems on 2D lattice", J. Math. Sci., 2025; 288(5): pp. 549-555. doi:10.1007/s10958-025-07744-x

Bak S.M., Kovtonyuk G.M. "Periodic traveling waves in Fermi-Pasta-Ulam-type systems with nonlocal interaction on 2d-lattice", Mat. Stud., 2023; 60(2): pp. 180-190. doi:10.30970/ms.60.2.180-190

Bak S.M., Kovtonyuk G.M. "Solitary traveling waves in Fermi-Pasta-Ulam-type systems with nonlocal interaction on a 2D-lattice", J. Math. Sci., 2024; 282(1): pp. 1-12. doi:10.1007/s10958-024-07164-3

Bak S.M., Kovtoniuk H.M. "Subsonic periodic traveling waves in Fermi-Pasta-Ulam-type systems with nonlocal interaction on 2D-lattice", Mat. Stud., 2024; 62(2): pp. 184-191. doi:10.30970/ms.62.2.184-191

Bak S.N., Pankov A.A. "Traveling waves in systems of oscillators on 2D-lattices", J. Math. Sci., 2011; 174(4): pp. 916-920.

Braun O.M., Kivshar Y.S. The Frenkel-Kontorova Model. Concepts, Methods and Applications, Springer, 2004.

Butt I.A., Wattis J.A.D. "Discrete breathers in a two-dimensional Fermi-Pasta-Ulam lattice", J. Phys. A. Math. Gen., 2006; 39: pp. 4955-4984. doi:10.1088/0305-4470/39/18/013

Chen P., Hu D., Zhang Y. "Ground states for infinite lattices with nearest neighbor interaction", Boundary Value Problems, 2020; 148: pp. 1-11. doi:10.1186/s13661-020-01440-2

Drábek P., Milota J. Methods of nonlinear analysis. Applications to differential equations, Birkhäuser, 2007.

Fečkan M., Rothos V. "Traveling waves in Hamiltonian systems on 2D lattices with nearest neighbour interactions", Nonlinearity, 2007; 20: pp. 319-341. doi:10.48550/arXiv.nlin/0701035

Friesecke G., Wattis J.A.D. "Existence theorem for solitary waves on lattices", Commun. Math. Phys., 1994; 161: pp. 391-418. doi:10.1007/BF02099784

Iooss G., Kirschgässner K. "Traveling waves in a chain of coupled nonlinear oscillators", Commun. Math. Phys., 2000; 211: pp. 439-464. doi:10.1007/s002200050821

Makita P.D. "Periodic and homoclinic travelling waves in infinite lattices", Nonlin. Analys., 2011; 74: pp. 2071-2086. doi:10.1016/j.na.2010.11.011

Pankov A.A., Pflüger K. "On ground-traveling waves for the generalized Kadomtsev–Petviashvili equations", Math. Phys. Analys, Geom., 2000; 3: pp. 33-47. doi:10.1023/A:1009805719625

Pankov A.A., Pflüger K. "Periodic and solitary traveling wave solutions for the generalized Kadomtsev-Petviashvili equation", Math. Meth. Appl. Sci., 1999; 22(9): pp. 733-752.

Pankov A. "Solitary waves on nonlocal Fermi-Pasta-Ulam lattices: Exponential localization", Nonlin. Analys. Real World Applic., 2019; 50: pp. 603-612. doi:10.1016/j.nonrwa.2019.06.007

Pankov A., Rothos V. "Traveling waves in Fermi-Pasta-Ulam lattices with saturable nonlinearities", Discr. Cont. Dyn. Syst., 2011; 30(3): pp. 835-840. doi:10.3934/dcds.2011.30.835

Pankov A. Traveling Waves and Periodic Oscillations in Fermi-Pasta-Ulam Lattices, Imperial College Press, 2005.

Pankov A. "Traveling waves in Fermi-Pasta-Ulam chains with nonlocal interaction", Discr. Cont. Dyn. Syst., 2019; 12(7): pp. 2097-2113. doi:10.3934/dcdss.2019135

Rabinowitz P. Minimax methods in critical point theory with applications to differential equations, Amer. Math. Soc., 1986.

Srikanth P. "On periodic motions of two-dimentional lattices", Func. Analys. Curr. Applic. Sci. Tech. Indust., 1998; 377: pp. 118-122.

Szulkin A., Weth T. "Ground state solutions for some indefinite variational problems", J. Func. Analys., 2009; 257(12): pp. 3802-3822. doi:10.1016/j.jfa.2009.09.013

Volpert A.I., Volpert V.A. Travelling wave solutions of parabolic systems, Amer. Math. Soc., 1994.

Willem M. Minimax theorems, Birkhäuser, 1996.

Zhang L., Ma S. "Ground state travelling waves in infinite lattices", Acta Math. Sci., 2016; 36(3): pp. 782-790. doi:10.1016/S0252-9602(16)30039-X




DOI: https://doi.org/10.15421/242523

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 S.M. Bak, H.M. Kovtoniuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU