Functions for the $$$3n+1$$$-problem

P. Kórus (University of Szeged), https://orcid.org/0000-0001-8540-6293

Abstract


What functions can represent the $$$3n+1$$$-problem? A number of such functions have been given during the past years. In this paper, a specific one is considered which has $$$1, 2, 3, \ldots$$$ as critical points and $$$1.5, 2.5, 3.5, \ldots$$$ as fixed points on the interval $$$[1,\infty)$$$. Another function is presented with critical points $$$1, 2, 3, \ldots ,$$$ and fixed point $$$0.5391\!\ldots $$$ on the real line.

Keywords


$$$3n+1$$$-problem; Collatz conjecture; Collatz function

MSC 2020


Pri 26A09, Sec 26A18

Full Text:

PDF

References


Chamberland M. "An update on the 3x+1 problem", Butl. Soc. Catalana Mat., 2003; 18(1): pp. 19-45.

Dumont J.P., Reiter C.A. "Visualizing generalized 3x+1 function dynamics", Computers & Graphics, 2001; 25(5): pp. 883-898. doi:10.1016/S0097-8493(01)00129-7

Lagarias J.C. The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010.

Letherman S., Schleicher D., Wood R. "The 3n+1-Problem and Holomorphic Dynamics", Experiment. Math., 1999; 8(3): pp. 241-251. doi:10.1080/10586458.1999.10504402

Wang J., Li X. "Fractal Property for A Novel Function generated by Generalized Approximate 3x+1 Functions", Proc. 2014 Int. Conf. Mechatron., Control Electr. Engin., 2014; pp. 369-372. doi:10.2991/mce-14.2014.82

Wolfram Research, Inc. Mathematica. Version 12.2, 2021.




DOI: https://doi.org/10.15421/242527

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 P. Kórus

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU