Solution of Bojanov-Naidenov problem with constraints for the norm $$$\|x\|_{p,\delta} = \sup \bigl\{ \| x \|_{L_p[a;b]} \colon a,b\in \mathbb{R}, b-a\leqslant \delta \bigr\}$$$
Abstract
Keywords
Full Text:
PDF (Русский)References
Kwong M.K., Zettl A. "Norm inequalities for derivatives and differences", Lecture notes in mathematics, 1993.
Bojanov B., Naidenov N. "An extension of the Landau-Kolmogorov inequality. Solution of a problem of Erdös", J. d'Analyse Mathematique, 1999; 78: pp. 263-280.
Pinkus A., Shisha O. "Variations on the Chebyshev and $$$L^q$$$-Theories of Best Approximation", J. Approx. Theory, 1982; 35(2): pp. 148-168.
Kofanov V.A. "Sharp inequalities of Bernstein and Kolmogorov type", East J. Approx, 2005; 11(2): pp. 131-145.
Korneichuk N.P., Ligun A.A., Doronin V.G. Approximation with constraints, 1982. (in Ukrainian)
Korneichuk N.P., Babenko V.F., Kofanov V.A., Pichugov S.A. Inequalities for derivatives and their applications, Naukova dumka, 2003.
Babenko V.F. "Researches of Dnipropetrovsk mathematicians on inequalities for derivatives of periodic functions and their applications", Ukrainian Math. J., 2000, 52(1): pp. 5-29.
Kofanov V.A. "Some extremum problems in different metrics for differentiable functions on the real domain", Ukrainian Math. J., 2009; 61(6): pp. 765-776.
Kofanov V.A. "Inequalities of various metrics for differentiable periodic functions", Ukrainian Math. J., 2015; 67(2): pp. 202-212.
Kolmogorov A.N. "On inequalities between upper bounds of consecutive derivatives of the function on infinite interval", Izbr. tr. Matematika, mekhanika, Nauka, 1985; pp. 252-263.
Korneichuk N.P., Babenko V.F., Ligun A.A. Extremum properties of polynomials and splines, Naukova dumka, 1992.
DOI: https://doi.org/10.15421/241705
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 V.A. Kofanov

This work is licensed under a Creative Commons Attribution 4.0 International License.











