The criterion of the best approximant for the multivariable functions in the space $$$L_{p_1,...,p_{i-1},1,p_{i+1},...,p_n}$$$

V.M. Traktyns'ka (Oles Honchar Dnipro National University)
M.Ye. Tkachenko (Oles Honchar Dnipro National University)
D.O. Osennikova (Oles Honchar Dnipro National University)

Abstract


The questions of the characterization of the best approximant for the multivariable functions in the space with mixed integral metric were considered in this article. The criterion of the best approximant in space $$$L_{p_1,...,p_{i-1},1,p_{i+1},...,p_n}$$$ is obtained.

Keywords


mixed integral metric; the best approximant

Full Text:

PDF

References


Kostyuk O.D., Traktyns'ka V.M., Tkachenko M.Ye. "Criterion of the best approximant for multivariable functions in spaces $$$L_{1,p_2,...,p_n}$$$ and $$$L_{p_1,...,p_{n-1},1}$$$", Dnipr. Univ. Math. Bull., 2016; 21: pp. 44-51. (in Ukrainian)

Smirnov G.S. "General form of linear functional and criterion of polynomial of the best approximation in spaces with mixed integral metric", Ukrainian Math. J., 1973; 25(1): pp. 134-138. (in Russian)

Smirnov G.S. "Criterion of polynomial of the best approximation in spaces $$$L_{p;1}$$$, $$$L_{1;q}$$$", Ukrainian Math. J., 1973; 25(3): pp. 415-419. (in Russian)

Traktyns'ka V.M. "Characterization of the best integral approximant of multivariable functions", Dnipr. Univ. Math. Bull., 2007; 12: pp. 134-136. (in Russian)




DOI: https://dx.doi.org/10.15421/241812

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 V.M. Traktyns'ka, M.Ye. Tkachenko, D.O. Osennikova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

Not much? See «Misleading Metrics» [web-archive] (by J. Beall), «The story of fake impact factor companies ...» (by M. Jalalian); on the other hand, see «Citation Statistics» (by R. Adler, J. Ewing, P. Taylor)


ISSN (Online): 2518-7996
ISSN (Print): 2312-9557