### The Bojanov-Naidenov problem for trigonometric polynomials and periodic splines

E.V. Asadova (Oles Honchar Dnipro National University)
V.A. Kofanov (Oles Honchar Dnipro National University), https://orcid.org/0000-0003-0392-2257

#### Abstract

For given $n, r \in \mathbb{N}$; $p, A > 0$ and any fixed interval $[a,b] \subset \mathbb{R}$ we solve the extremal problem $\int\limits_a^b |x(t)|^q dt \rightarrow \sup$, $q \geqslant p$, over sets of trigonometric polynomials $T$ of order $\leqslant n$ and $2\pi$-periodic splines $s$ of order $r$ and minimal defect with knots at the points $k\pi / n$, $k \in \mathbb{Z}$, such that $\| T \| _{p, \delta} \leqslant A \| \sin n (\cdot) \|_{p, \delta} \leqslant A \| \varphi_{n,r} \|_{p, \delta}$, $\delta \in (0, \pi / n]$, where $\| x \|_{p, \delta} := \sup \{ \| x \|_{L_p[a,b]} \colon a, b \in \mathbb{R}, 0 < b - a < \delta\}$ and $\varphi_{n, r}$ is the $(2\pi / n)$-periodic spline of Euler of order $r$. In particular, we solve the same problem for the intermediate derivatives $x^{(k)}$, $k = 1, ..., r-1$, with $q \geqslant 1$.

#### Keywords

Bojanov-Naidenov problem; polynomial; spline; rearrangement; comparison theorem

PDF

#### References

Korneichuk N.P., Babenko V.F., Kofanov V.A., Pichugov S.A. Inequalities for derivatives and their applications, Nauk. dumka, Kyiv, 2003; 590 p. (in Russian)

Babenko V.F. "Researches of Dnipropetrovsk mathematicians on inequalities for derivatives of periodic functions and their applications", Ukrainian Math. J., 2000, 52(1): pp. 5-29. (in Russian) doi:10.1007/BF02514133

Kwong M.K., Zettl A. "Norm inequalities for derivatives and differences", Lecture notes in mathematics, 1993; 1536: 150 p.

Bojanov B., Naidenov N. "An extension of the Landau-Kolmogorov inequality. Solution of a problem of Erdös", J. d'Analyse Mathematique, 1999; 78: pp. 263-280. doi:10.1007/BF02791137

Erdös P. "Open problems", Open Problems in Approximation Theory (B. Bojanov, ed.), SCT Publishing, Singapur, 1994; pp. 238-242.

Pinkus A., Shisha O. "Variations on the Chebyshev and $L^q$-Theories of Best Approximation", Journal of Approx. Theory, 1982; 35(2): pp. 148-168. doi:10.1016/0021-9045(82)90033-8

Kofanov V.A. "Some extremum problems in different metrics for differentiable functions on the real domain", Ukrainian Math. J., 2009; 61(6): pp. 765-776. (in Russian) doi:10.1007/s11253-009-0254-5

Kofanov V.A. "Some extremal problems in various metrics and sharp inequalities of Nagy-Kolmogorov type", East. J. Approx., 2010; 16(4): p. 313-334.

Kofanov V.A. "Exact upper bounds of norms of functions and their derivatives on the classes of functions with given comparison function", Ukrainian Math. J., 2011; 63(7): pp. 969-984. (in Russian) doi:10.1007/s11253-011-0567-z

Kofanov V.A. "Bojanov-Naidenov problem for differentiable functions on the axis and inequalities of various metrics", Ukrainian Math. J., 2019; 71(6): pp. 786-800. (in Russian) doi:10.1007/s11253-019-01687-8

Kofanov V.A. "Inequalities of various metrics for differentiable periodic functions", Ukrainian Math. J., 2015; 67(2): pp. 202-212. (in Russian) doi:10.1007/s11253-015-1076-2

Kolmogorov A.N. "On inequalities between upper bounds of consecutive derivatives of the function on infinite interval", Izbr. tr. Matematika, mekhanika, Nauka, Moscow, 1985; pp. 252-263. (in Russian)

Korneichuk N.P., Babenko V.F., Ligun A.A. Extremum properties of polynomials and splines, Naukova dumka, Kyiv, 1992; 304 p. (in Russian)

DOI: https://doi.org/10.15421/241901

### Refbacks

• There are currently no refbacks.  