On interpolation of operator, which is the sum of weighted Hardy-Littlewood and Cesaro mean operators

B.I. Peleshenko (Dnipro State Agrarian and Economic University)

Abstract


It is proved that operators, which are the sum of weighted Hardy-Littlewood $$$\int\limits_0^1 f(xt) \psi(t) dt$$$ and Cesaro $$$\int\limits_0^1 f(\frac{x}{t}) t^{-n} \psi(t) dt$$$ mean operators, are limited on Lorentz spaces $$$\Lambda_{\varphi, a} (\mathbb{R})$$$, if the functions $$$f(x) \in \Lambda_{\varphi, a}(\mathbb{R})$$$ satisfy the condition $$$|f(-x)| = |f(x)|$$$, $$$x > 0$$$, for such non-increasing semi-multiplicative functions $$$\psi$$$, for which the next conditions are satisfied: $$$\frac{M_1}{\psi(t)} \leqslant \psi(\frac{1}{t}) \leqslant \frac{M_2}{\psi(t)}$$$, for all $$$0 < t \leqslant 1$$$; at some $$$0 < \varepsilon < \frac{1}{2}$$$, $$$0 < \delta < \frac{1}{2}$$$ functions $$$\psi(t) t^{1-\varepsilon}$$$, $$$\psi(\frac{1}{t}) t^{-\delta}$$$ do not decrease monotonically and functions $$$\psi(t) t$$$, $$$\psi (\frac{1}{t})$$$ are absolutely continuous. Also, there are proved sufficient conditions that the operators, which are the sum of weighted Hardy-Littlewood and Cesaro mean operators, when $$$\psi(t) = t^{-\alpha}$$$, where $$$\alpha \in (0, \frac{1}{2})$$$, on Lorentz spaces $$$\Lambda_{\varphi, a}(\mathbb{R})$$$, if the functions $$$f(x) \in \Lambda_{\varphi, a}(\mathbb{R})$$$ satisfy the condition $$$|f(-x)| = |f(x)|$$$, $$$x > 0$$$.

Keywords


fundamental function; operators of weak type; index of stretching function; Lorentz spaces

Full Text:

PDF

References


Carton-Lebrun C., Fosset M. "Moyennes et quotients de Taylor dans BMO", Bull. Soc. Roy. Sci. Liege, 1984; 53(2): pp. 85-87. (in French)

Хiао J. "$$$L_p$$$ and BMO bounds of weighted Hardy-Littlewood averages", J. Math. Anal. Appl., 2001; 262: pp. 660-666.

Krein S.G., Petunin Yu.I., Semyonov Ye.M. Interpolation of linear operators, Nauka, Moscow, 1978; 400 p. (in Russian)

Peleshenko B.I. "Interpolation of operators of weak type $$$(\phi_0, \psi_0, \phi_1, \psi_1)$$$ in Lorentz spaces", Ukrainian Math. J., 2005; 57(11): pp. 1132-1145. (in Russian)

Peleshenko B.I. "On operators of weak type", Works of Ukrainian Math. Congress-2001. Functional Analysis, Kyiv, 2002; pp. 234-244. (in Russian)

Peleshenko B.I. "On operators of weak type $$$(\phi_0, \psi_0, \phi_1, \psi_1)$$$", Works of Ukrainian Math. Congress-2001. Functional Analysis, Kyiv, 2002; pp. 234-244. (in Russian)

Dunford N., Schwartz J.T. Linear operators, Moscow, IL, 1962; 896 p. (in Russian)




DOI: https://dx.doi.org/10.15421/241905

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 B.I. Peleshenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

Not much? See «Misleading Metrics» [web-archive] (by J. Beall), «The story of fake impact factor companies ...» (by M. Jalalian); on the other hand, see «Citation Statistics» (by R. Adler, J. Ewing, P. Taylor)


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991