### The uniqueness of the best non-symmetric $$$L_1$$$-approximant with a weight for continuous functions with values in KB-space

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Kroo A. "A General Approach to the Study of Chebyshev Subspaces in $$$L_1$$$-Approximation of Continuous Functions", *J. Approx. Theory*, 1987; 51: pp. 98-111.

Pinkus A. *$$$L_1$$$-Approximation*, Cambridge, 1989; 239 p.

Strauss H. "Unicity in $$$L_1$$$-approximation", *Math. Zeitschr.*, 1981; pp. 63-74. (in German)

Babenko V.F., Tkachenko M.Ye. "Problems of unicity of the best non-symmetric $$$L_1$$$-approximant of continuous functions with values in KB-spaces", *Ukrainian Math. J.*, 2008; 60(7): pp. 867-878. (in Russian)

Vulikh B.Z. *Introduction to the theory of semi-ordered spaces*, Moscow, 1961; 407 p. (in Russian)

Tkachenko M.Ye., Traktynska V.M. "Criterions for the best non-symmetric $$$L_p$$$- and $$$L_1$$$-approximant for the functions with values in KB-spaces with weight", *Dnipr. Univ. Math. Bull.*, 2017; 22: pp. 97-102. (in Ukrainian)

DOI: https://dx.doi.org/10.15421/241907

### Refbacks

- There are currently no refbacks.

Copyright (c) 2019 M.Ye. Tkachenko, V.M. Traktynska

This work is licensed under a Creative Commons Attribution 4.0 International License.

#### Registered in

Not much? See «Misleading Metrics» [web-archive] (by J. Beall), «The story of fake impact factor companies ...» (by M. Jalalian); on the other hand, see «Citation Statistics» (by R. Adler, J. Ewing, P. Taylor)