Sharp inequalities of Jackson type in weighted space $$$L_{2;\rho}({\mathbb{R}}^2)$$$

S.B. Vakarchuk (Alfred Nobel Dnipropetrovsk University),
M.B. Vakarchuk (Oles Honchar Dnipropetrovsk National University)


Sharp inequalities of Jackson type, connected with the best approximation by "angles" of algebraic polynomials have been obtained on the classes of differentiable functions of two variables in the metric of space $$$L_{2;\rho}({\mathbb{R}}^2)$$$ of the Chebyshev-Hermite weight.


generalized modulus of continuity; best approximation by "angle"; Chebyshev-Hermite polynomials


Abilov V.A., Abilov M.V. "Approximation of functions in $$$L_2({\mathbb{R}}^N;\exp(-|x|^2)$$$", Matem. zametki, 1995; 57(1): pp. 3-19. (in Russian) doi:10.1007/BF02309388

Szego G. Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. vol. XXIII, Amer. Math. Soc, New York, 1959; Russian transl.: GIFML, Moscow, 1962.

Rzhavinskaya Ye.V. On approximation by algebraic polynomials in the metric of $$$L_p$$$ space with weight: Diss. cand. phys.-math. sc., Moscow, 1980; 126 p. (in Russian)

Potapov M.K. "On approximation by 'angle'", Proc. of the Conf. on Constructive Theory of Functions, Budapest, 1972; pp. 371-399. (in Russian)

Vakarchuk S.B. "On the best approximation by generalized polynomials in one space of analytical functions of two complex variables", Izv. vuzov. Matematika, 1991; 7: pp. 14-25. (in Russian)




  • There are currently no refbacks.

Copyright (c) 2014 S.B. Vakarchuk, M.B. Vakarchuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Registered in

ISSN (Online): 2664-5009
ISSN (Print): 2664-4991