### The best approximation of classes, defined by powers of self-adjoint operators acting in Hilbert space, by other classes

#### Abstract

#### Full Text:

PDF (Русский)#### References

Akhiezer N.I., Glazman I.M. *Theory of linear operators in Hilbert space*, Moscow, 1966; 544 p. (in Russian)

Babenko V.F., Korneichuk N.P., Kofanov V.A., Pichugov S.A. *Inequalities for derivatives and their applications*, Naukova dumka, Kyiv, 2003; 590 p. (in Russian)

Korneichuk N.P. "Inequalities for differentiable periodic functions and the best approximation of one class of functions by another", *Izv. AN SSSR. Ser. Matem.*, 1972; 36(2): pp. 423-434. (in Russian) doi:10.1070/IM1972v006n02ABEH001880

Korneichuk N.P. *Extremum problems in approximation theory*, Moscow, 1976; 320 p. (in Russian)

Korneichuk N.P. "Extreme values of functionals and the best approximation on classes of periodic functions", *Izv. AN SSSR. Ser. Matem.*, 1971; 35(1): pp. 93-124. (in Russian) doi:10.1070/IM1971v005n01ABEH001015

Subbotin Yu.N., Taikov L.V. "The best approximation of a differentiation operator in $$$L_2$$$ space", *Matem. zametki*, 1968; 3(2): pp. 157-164. (in Russian) doi:10.1007/BF01094328

DOI: https://doi.org/10.15421/240904

### Refbacks

- There are currently no refbacks.

Copyright (c) 2009 V.F. Babenko, R.O. Bilichenko

This work is licensed under a Creative Commons Attribution 4.0 International License.