On subgroups that are nearly pronormal

V.A. Chupordia (Oles Honchar Dnipropetrovsk National University)


A subgroup $$$H$$$ is called abnormal in the group $$$G$$$ if $$$g \in {<}H, H^g{>}$$$ for each $$$g \in G$$$. A subgroup $$$H$$$ of a group $$$G$$$ is called a strong selfnormalizer if for all subgroups $$$K$$$ such that $$$H \leqslant K$$$ the equality $$$N_K(H) = H$$$ is true. We obtain the examples of non-abnormal but strong selfnormalizer subgroups.


Vincenzi G., Kurdachenko L.A., Russo A. "On some groups, all subgroups of which are nearly pronormal", Ukrainian Math. J., 2007; 59(10): pp. 1331-1338. (in Russian) doi:10.1007/s11253-008-0007-x

Hai B.X., Hung T.V.P., Van Dai T. On polynormal subgroups with abnormal normalizers in finite groups, math.hcmuns.edu.vn/~bxhai/abc/poly.pdf

Carter R.W. "Nilpotent self-normalizing subgroups of soluble groups", Math. Zeitschr., 1961; 75: pp. 136-139. doi:10.1007/BF01211016

Hall P. "On the System Normalizers of a Soluble Group", Proc. London Math. Soc., 1938; 43(1): pp. 507-528. doi:10.1112/plms/s2-43.6.507

Rose J.S. "Finite soluble groups with pronormal system normalizers", Proc. London Math. Soc., 1967; 17(3): pp. 447-469. doi:10.1112/plms/s3-17.3.447

DOI: https://doi.org/10.15421/240921



  • There are currently no refbacks.

Copyright (c) 2009 V.A. Chupordia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Registered in


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991