On approximation of nonperiodic functions by algebraic polynomials in $$$L_p$$$ metric ($$$0 < p < 1$$$)

L.B. Khodak (Dnipropetrovsk State University)

Abstract


In the paper, we consider approximations of nonperiodic functions defined on $$$[-1, 1]$$$ by algebraic polynomials in $$$L_p$$$ metric ($$$0 < p < 1$$$).
In particular, for some classes we provide the constructive characteristic in the same metric.

References


Ivanov V.I. "Direct and inverse theorems of approximation theory in the metric of $$$L_p$$$ when $$$0 < p < 1$$$", Mat. zametki, 1975; 18(5): pp. 641-658. (in Russian) doi:10.1007/BF01153563

Storozhenko E.A., Krotov V.G., Osval'd P. "Direct and inverse theorems of Jackson type in $$$L_p$$$ spaces, $$$0 < p < 1$$$", Mat. sb., 1975; 98(3): pp. 395-415. (in Russian) doi:10.1070/SM1975v027n03ABEH002519

Krotov V.G., Osval'd P., Storozhenko E.A. "Direct and inverse theorems of Jackson type in $$$L_p$$$ spaces, $$$0 < p < 1$$$", DAN SSSR, 1976; 226(1): pp. 44-47. (in Russian)

Potapov M.K. "On approximation of non-periodic functions by algebraic polynomials", Vestn. Mosk. un-ta, 1960; 4: pp. 14-25. (in Russian)

Timan A.F. Approximation theory for real-variable functions, Fizmatgiz, 1960. (in Russian)

Motornyi V.P. "Approximation of functions by algebraic polynomials in $$$L_p$$$ metric", Izv. AN SSSR. Ser.: Matematika, 1971; 35(4): pp. 874-899. (in Russian) doi:10.1070/IM1971v005n04ABEH001122

Motornyi V.P. Approximation of functions by algebraic polynomials in $$$L_p$$$ metric: Dissertation., Dnipropetrovsk, 1967. (in Russian)

Ul'yanov P.L. "Inclusion of certain classes $$$H_p^{\omega}$$$ of functions", Izvestiya AN USSR. Ser. matem., 1968; 32(3): pp. 649-686. (in Russian) doi:10.1070/IM1968v002n03ABEH000650




DOI: https://doi.org/10.15421/247710

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 1977 L.B. Khodak

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU