### Some estimates of approximation of functions by Hermitian splines

#### Abstract

#### Full Text:

PDF (Русский)#### References

Velikin V.L. "Exact values of approximation by Hermitian splines on the classes of differentible functions", *Izv. AN SSSR, Ser. matematicheskaya*, 1973; 37(1): pp. 165-185. (in Russian) doi:10.1070/IM1973v007n01ABEH001931

Nikolskii S.M. *Quadrature formulas*, 1974. (in Russian)

Ligun A.A. "On one property of interpolated spline-functions", *Ukrainian Math. J.*, 1980; 32(4): pp. 507-514. (in Russian) doi:10.1007/BF01091990

Korneichuk N.P. *Splines in approximation theory*, Nauka, 1984. (in Russian)

Ul'yanov P.L. "Inclusion of certain classes $$$H_p^{\omega}$$$ of functions", *Izvestiya AN USSR. Ser. matem.*, 1968; 32(3): pp. 649-686. (in Russian) doi:10.1070/IM1968v002n03ABEH000650

Motornyi V.P. "Some problems of approximation of functions by algebraic polynomials in the integral metric", *Doklady AN SSSR, Ser. Matem.*, 1967; 172(3): pp. 537-540. (in Russian)

Tikhomirov V.M. *Some problems of approximation theory*, Izd-vo Moskovskogo un-ta, 1976. (in Russian)

Ciarlet P.G., Schultz M.H., Varga R.S. "Numerical methods of high-order accuracy for nonlinear boundary value problems I. One-dimensional problem", *Numer. Math.*, 1967; 9: pp. 394-430. doi:10.1007/BF02162155

DOI: https://doi.org/10.15421/248705

### Refbacks

- There are currently no refbacks.

Copyright (c) 1987 O.V. Davydov

This work is licensed under a Creative Commons Attribution 4.0 International License.