### On the best approximation, by polynomials, of some classes of functions

#### Abstract

#### Full Text:

PDF (Русский)#### References

Akhiezer N.I., Krein M.G. "On the best approximation, by trigonometric sums, of differentiable periodic functions", *Dokl. AN SSSR*, 1937; 15: pp. 107-112. (in Russian)

Boksha A.N., Rusak V.N. "Rational approximation of singular integrals", *Int. Conf. on Approx. Theory 1996*; 1: pp. 38-39. (in Russian)

Boksha A.N. "Rational approximation of singular integrals with convex density", *Fourier series: theory and applications*, 1997; pp. 24-25. (in Russian)

Motornaia O.V. "On the best approximation of classes of differentiable functions by algebraic polynomials in $$$L_1$$$", *Approx. of functions and series summ. Dnipropetrovsk*, 1991; pp. 40-51. (in Russian)

Motornaia O.V. *On the best approximation of differentiable functions by algebraic polynomials in $$$L_1$$$ space*, 1993. (in Russian)

Motornaia O.V. "On asymptotic estimates of the best approximations of differentiable functions by algebraic polynomials in $$$L_1$$$ space", *Ukrainian Math. J.*, 1993; 45(6): pp. 859-862. (in Russian) doi:10.1007/BF01061445

Pekarskii A.A. "Interrelations between the best rational and piecewise-polynomial approximations in uniform metric", *Proc. Int. Conf. on Approx. Theory 1996*; 2: pp. 168-169. (in Russian)

Butzer P.L., Stens R.L. "The operational properties of the Chebyshev transform", *Proc. Int. Conf. on Funct. Approx. Theory*, 1977; pp. 49-61.

Devore R. "Pointwise approximation by polynomials and splines", *Proc. Int. Conf. on Funct. Approx. Theory*, 1977; pp. 132-141.

Sinvel H. "Uniform approximation of differentiable functions by algebraic polynomials", *J. Approx. Theory*, 1981; 32: pp. 1-8. doi:10.1016/0021-9045(81)90017-4

DOI: https://doi.org/10.15421/249812

### Refbacks

- There are currently no refbacks.

Copyright (c) 1998 O.V. Motornaia

This work is licensed under a Creative Commons Attribution 4.0 International License.