On the Construction of Chaotic Dynamical Systems on the Box Fractal

N. Aslan (Eskişehir Technical University), https://orcid.org/0000-0002-2103-0511
M. Saltan (Eskişehir Technical University), https://orcid.org/0000-0002-3252-3012


In this paper, our main aim is to obtain two different discrete chaotic dynamical systems on the Box fractal ($$$B$$$). For this goal, we first give two composition functions (which generate Box fractal and filled-square respectively via escape time algorithm) of expanding, folding and translation mappings. In order to examine the properties of these dynamical systems more easily, we use the intrinsic metric which is defined by the code representation of the points on $$$B$$$ and express these dynamical systems on the code sets of this fractal. We then obtain that they are chaotic in the sense of Devaney and give an algorithm to compute periodic points.


Box fractal; code representation; intrinsic metric; chaotic dynamical systems; periodic points; escape time algorithm

Full Text:



Aslan N., Saltan M., Demir B. "A different construction of the classical fractals via the escape time algorithm", J. Abstr. Comp. Math., 2018; 3(4): pp. 1-15.

Aslan N., Saltan M., Demir B. "The intrinsic metric formula and a chaotic dynamical system on the code set of the Sierpinski tetrahedron", Chaos, Solitons and Fractals, 2019; 123: pp. 422-428. doi:10.1016/j.chaos.2019.04.018

Barnsley M. Fractals Everywhere, Acad. Press, 1988.

Devaney R.L. An Introduction to Chaotic Dynamical Systems. Addison-Wesley Pub. Co., 1989.

Ercai C. "Chaos for the Sierpinski carpet", J. Stat. Phys., 1997; 88: pp. 979-984. doi:10.1023/B:JOSS.0000015182.90436.5b

Gulick D. Encounters with chaos and fractals, Acad. Press, 2012.

Hutchinson J.E. "Fractals and self-similarity", Indiana Univ. Math. J., 1981; 30: pp. 713-747.

Kigami J. Analysis on Fractals, Cambridge Univ. Press, 2001.

Özdemir Y., Saltan M., Demir B. "The Intrinsic Metric on the Box Fractal", Bull. Iran. Math. Soc., 2018; 45(5): pp. 1269-1281. doi:10.1007/s41980-018-00197-w

Peitgen H.O., Jürgens H., Saupe D. Chaos and Fractals: New Frontiers of Science, Springer-Verlag, 2004.

Saltan M., Özdemir Y., Demir B. "An explicit formula of the intrinsic metric on the Sierpinski gasket via code representation", Turk. J. Math., 2018; 42: pp. 716-725. doi:10.3906/mat-1702-55

Saltan M., Özdemir Y., Demir B. "Geodesics of the Sierpinski Gasket", Fractals, 2018; 26(3): 1850024. doi:10.1142/S0218348X1850024X

Saltan M. "Some Interesting Code Sets of the Sierpinski Triangle Equipped with the Intrinsic Metric", IJAMAS 2018; 57(4): pp. 152-160.

Saltan M. "Intrinsic metrics on Sierpinski-like triangles and their geometric properties", Symmetry, 2018; 10(6): p. 204. doi:10.3390/sym10060204

Saltan M., Aslan N., Demir B. "A discrete chaotic dynamical system on the Sierpinski gasket", Turk. J. Math., 2019; 43: 361-372. doi:10.3906/mat-1803-77

DOI: https://doi.org/10.15421/242105



  • There are currently no refbacks.

Copyright (c) 2021 N. Aslan, M. Saltan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Registered in

ISSN (Online): 2664-5009
ISSN (Print): 2664-4991