Methods of group theory in Leibniz algebras: some compelling results

I.Ya. Subbotin (Los Angeles National University),


The theory of Leibniz algebras has been developing quite intensively. Most of the results on the structural features of Leibniz algebras were obtained for finite-dimensional algebras and many of them over fields of characteristic zero. A number of these results are analogues of the corresponding theorems from the theory of Lie algebras. The specifics of Leibniz algebras, the features that distinguish them from Lie algebras, can be seen from the description of Leibniz algebras of small dimensions. However, this description concerns algebras over fields of characteristic zero. Some reminiscences of the theory of groups are immediately striking, precisely with its period when the theory of finite groups was already quite developed, and the theory of infinite groups only arose, i.e., with the time when the formation of the general theory of groups took place. Therefore, the idea of using this experience naturally arises. It is clear that we cannot talk about some kind of similarity of results; we can talk about approaches and problems, about application of group theory philosophy. Moreover, every theory has several natural problems that arise in the process of its development, and these problems quite often have analogues in other disciplines. In the current survey, we want to focus on such issues:  our goal is to observe which parts of the picture involving a general structure of Leibniz algebras have already been drawn, and which parts of this picture should be developed further.


Leibniz algebra; Lie algebra; cyclic subalgebra; left center; right center; center of a Leibniz algebra; nilpotent subalgebra; Abelian subalgebra; extraspecial subalgebra

Full Text:



Amayo R.K., Stewart I. Infinite Dimensional Lie Algebras, Noordhoff Int. Publ., 1974.

Ayupov Sh.A., Omirov B.A., Rakhimov I.S. Leibniz Algebras: Structure and Classification, CRC Press, Taylor&Francis Group, 2020.

Blokh A. "On a generalization of the concept of Lie algebra", Dokl. Akad. nauk USSR, 1965; 165: 471-473. (in Russian)

Barnes D. "Schunck classes of soluble Leibniz algebras", Comm. Algebra, 2013; 41: 4046-4065. doi:10.1080/00927872.2012.700978

Chupordya V.A., Kurdachenko L.A., Subbotin I.Ya. "On some 'minimal' Leibniz algebras", J. Algebra Appl., 2017; 16: 1750082. doi:10.1142/S0219498817500827

Chupordya V.A., Kurdachenko L.A., Semko N.N. "On the structure of Leibniz algebras whose subalgebras are ideals or core-free", Algebra Discrete Math., 2020; 29: pp. 180-194. doi:10.12958/adm1533

Hartley B. "Locally nilpotent ideals of a Lie algebra", Math. Proc. Cambridge Philos. Soc., 1967; 63: pp. 257-272. doi:10.1017/S0305004100041177

Hirsch K.A. "Über lokal-nilpotente Gruppen", Math. Z., 1955; 63: pp. 290-291. doi:10.1007/BF01187939

Kurdachenko L.A., Semko N.N., Subbotin I.Ya. "The Leibniz algebras whose subalgebras are ideals", Open Math., 2017; 15: pp. 92-100. doi:10.1515/math-2017-0010

Kurdachenko L.A., Subbotin I.Ya., Semko N.N. "On the anticommutativity in Leibniz algebras", Algebra Discrete Math., 2018; 26: pp. 97-109.

Kurdachenko L.A., Subbotin I.Ya., Semko N.N. "From groups to Leibniz algebras: common approaches, parallel results", Adv. Group Theory Appl., 2018; 5: pp. 1-31. doi:10.4399/97888255161421

Kurdachenko L.A., Subbotin I.Ya., Yashchuk V.S. "The Leibniz algebras whose subideals are ideals", J. Algebra Appl., 2018; 17: 1850151. doi:10.1142/S0219498818501517

Kurdachenko L.A., Subbotin I.Ya., Yashchuk V.S. "On ideals and contraideals in Leibniz algebras", Dopov. Nac. akad. nauk Ukr., 2020; 1: pp. 11-15. doi:10.15407/dopovidi2020.01.011

Kurdachenko L.A., Subbotin I.Ya., Yashchuk V.S. "Some antipodes of ideals in Leibniz algebras", J. Algebra Appl., 2020; 19: 2050113. doi:10.1142/S0219498820501133

Kurdachenko L.A., Subbotin I.Ya., Yashchuk V.S. "Leibniz algebras whose subalgebras are left ideals", Serdica Math. J., 2020; 46: pp. 175-194.

Kurdachenko L.A., Otal J., Pypka A.A. "Relationships between factors of canonical central series of Leibniz algebras", Eur. J. Math., 2016; 2: pp. 565-577. doi:10.1007/s40879-016-0093-5

Kurdachenko L.A., Otal J., Subbotin I.Ya. "On some properties of the upper central series in Leibniz algebras", Comment. Math. Univ. Carolin., 2019; 60: pp. 161-175. doi:10.14712/1213-7243.2019.009

Loday J.L. "Une version non commutative des algèbres de Lie: les algèbres de Leibniz", Enseign. Math., 1993; 39: pp. 269-293. (in French)

Loday J.L., Pirashvili T. "Universal enveloping algebras of Leibniz algebras and (co)homology", Math. Ann., 1993; 296: pp. 139-158.

Maltsev A.I. "Nilpotent torsion-free groups", Izv. Akad. nauk USSR, 1949; 13: pp. 201-212. (in Russian)

Plotkin B.I. "To the theory of locally nilpotent groups", Dokl. Akad. nauk USSR, 1951; 76: pp. 655--657. (in Russian)

Plotkin B.I. "Radical groups", Mat. sbornik, 1955; 37: pp. 507-526. (in Russian)

Plotkin B.I. "Generalized soluble and generalized nilpotent groups", Uspekhi. Mat. Nauk, 1958; 13: pp. 89-172. (in Russian)

Scofield D., McKay Sullivan S. "Classification of complex cyclic Leibniz algebras", 2014; arXiv:1411.0170v2




  • There are currently no refbacks.

Copyright (c) 2021 I.Ya. Subbotin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Registered in

ISSN (Online): 2664-5009
ISSN (Print): 2664-4991