### Two sharp inequalities for operators in a Hilbert space

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Ainulloev N. "An exact estimate of the second derivative in $$$L_p$$$", *Math. Notes AN SSSR*, 1991; 49(5): pp. 443-445. doi:10.1007/BF01142636

Akhiezer N.I., Glazman I.M. *Theory of linear operators in Hilbert space*, Vyshcha shkola, 1977. (in Russian)

Babenko V.F., Bilichenko R.O. "Approximation of unbounded operators by bounded operators in a Hilbert space", *Ukrainian Math. J.*, 2009; 61(2): pp. 179-187. doi:10.1007/s11253-009-0212-2

Babenko V.F., Bilichenko R.O. "The best approximation of classes, defined by powers of self-adjoint operators acting in Hilbert space, by other classes", *Res. Math.*, 2009; 17: pp. 23-30. (in Russian) doi:10.15421/240904

Berezanskij Yu.M., Us G.F., Sheftel' Z.G. *Functional analysis*, Vyshcha Shkola, 1990. (in Russian)

Kuptsov N.P. "Direct and converse theorems of approximation theory and semigroups of operators", *Russian Math. Surv.*, 1968; 23(4): pp. 115-177. doi:10.1070/RM1968v023n04ABEH003773

Taikov L.V. "Some exact inequalities in approximation theory for functions", *Anal. Math.*, 1976; 2: pp. 77-85.

Trenogin V.A. *Functional Analysis*, Nauka, 1980.

DOI: https://doi.org/10.15421/242206

### Refbacks

- There are currently no refbacks.

Copyright (c) 2022 N.O. Kriachko

This work is licensed under a Creative Commons Attribution 4.0 International License.