A Note on Sequence of Functions associated with the Generalized Jacobi polynomial

D. Waghela (Maharaja Sayajirao University of Baroda)
S.B. Rao (Maharaja Sayajirao University of Baroda), https://orcid.org/0000-0002-5672-4927


An attempt is made to introduce and use operational techniques to study about a new sequence of functions containing generalized Jacobi polynomial. Some generating relations, finite summation formulae, explicit representation of a sequence of function $$$S_{n,\tau ,k}^{(\alpha ,\beta ,\gamma ,\delta )} (x;a,u,v)$$$ associated with the generalized Jacobi polynomial $$$P_{n,\,\tau }^{\left( {\alpha ,\,\gamma ,\,\beta } \right)} (x)$$$ have been deduced.


Jacobi polynomial; generalized Jacobi polynomial; generating relations; finite summation formulae

MSC 2020

33E20; 44A99; 33C45; 33E30; 33E12; 33E99

Full Text:



Ajudia N.K., Prajapati J.C. "On a Sequence of functions $$$V_n^{(\alpha, \beta, \delta)}(x; a, k, s)$$$", Proyecciones J. Math., 2016; 35(4): pp. 417-436. doi:10.4067/S0716-09172016000400005

Mittal H.B. "Bilinear and bilateral generating functions", American J. Math., 1977; 99: pp. 23-55. doi:10.2307/2374007

Patil K.R., Thakare N.K. "Operational formulas for a function defined by a generalized Rodrigues formula-II", Sci. J. Shivaji Univ., 1975; 15: pp. 1-10.

Rainville E.D. Special functions, The MacMillan Company, 1960.

Rao S.B. "Explicit Representation and some Integral transforms of sequence of functions associated with the Wright type Generalized Hypergeometric Function", Glob. J. Pure Appl. Math., 2017; 13(9): pp. 6703-6712.

Patil K.R., Thakare N.K. "Operational formulas for a function defined by a generalized Rodrigues formula-II", Sci. J. Shivaji Univ., 1975; 15: pp. 1-10.

Rao S.B., Prajapati J.C., Patel A.D., Shukla A.K. "Some Properties of Wright-type Generalized Hypergeometric Function via fractional calculus", Adv. Diff. Equ., 2014; 2014: 119. doi:10.1186/1687-1847-2014-119

Rao S.B., Prajapati J.C., Shukla A.K. "Wright type Hypergeometric functions and its properties", Adv. Pure Math., 2013; 3(3): pp. 335-342. doi:10.4236/apm.2013.33048

Rao S.B., Salehbhai I.A., Shukla A.K. "On sequence of functions Containing Generalized Hypergeometric Function", Math. Sci. Res. J., 2013; 17(4): pp. 98-110.

Rao S.B., Shukla A.K. "Note on Generalized Hypergeometric Function", Integral transforms and special functions, 2013; 24(11): pp. 896-904. doi:10.1080/10652469.2013.773327

Riordan J. Combinatorial identities, Wiley (New York/London/Sydney), 1968.

Shukla A.K., Prajapati J.C. "A general class of polynomial associated with generalized Mittag-Leffler function", Integral transforms and Special functions, 2008; 19(1): pp. 23-34. doi:10.1080/10652460701511236

Shukla A.K., Prajapati J.C. "Generalization of Mittag-Leffler function and its properties", J. Math. Analysis Appl., 2007; 336: pp. 797-811. doi:10.1016/j.jmaa.2007.03.018

Srivastava A.N., Singh S.N. "Some generating relations connected with a function defined by a generalized Rodrigues formula", Indian J. Pure Appl. Math., 1979; 10(10): pp. 1312-1317.

Srivastava H.M., Manocha H.L. A treatise on generating functions, Ellis Horwood Limited, Chichester, 1984.

Srivastava H.M., Singhal J.P. "A class of polynomials defined by generalized Rodrigues' formula", Annali di Mathematica Pura ed Applicata, 1971; 90(4): pp. 75-85. doi:10.1007/BF02415043

Srivastava H.M. "Some families of generating functions associated with the Stirling numbers of second kind", J. Math. Analysis Appl., 2000; 251: pp. 752-769. doi:10.1006/jmaa.2000.7049

Srivastava H.M., Lavoie J.L. "A certain method of obtaining bilateral generating functions", Indagationes Math. (Proc.), 1975; 78(4): pp. 304-320. doi:10.1016/1385-7258(75)90002-5

Virchenko N., Kalla S.L., Al-Zamel A. "Some Results On a Generalized Hypergeometric Function", Integral Transforms and Special Functions, 2001; 12(1): pp. 89-100. doi:10.1080/10652460108819336

DOI: https://doi.org/10.15421/242316



  • There are currently no refbacks.

Copyright (c) 2023 D. Waghela, S.B. Rao

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Registered in


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991