Absolute convergence of Fourier integrals and Lipschitz classes defined with differences of fractional order

B.I. Peleshenko (Dnipropetrovsk State Agrarian and Economic University)
T.N. Semirenko (Dnipropetrovsk State Agrarian and Economic University)


The necessary and sufficient conditions in terms of Fourier transforms $$$\hat{f}$$$ of functions $$$f\in L^1(\mathbb{R})$$$ are obtained for $$$f$$$ to belong to the Lipschitz classes $$$H_C^{\omega, \alpha}(\mathbb{R})$$$ and $$$h_C^{\omega, \alpha}(\mathbb{R})$$$, defined by differences of fractional order.


Fourier transform; Fourier integral; modulus of continuity; Lipschitz classes


Stein I., Weiss G. Introduction to Fourier analysis on Euclidean spaces, Mir, Moscow, 1974; 333 p. (in Russian)

Moricz F. "Absolutely convergent Fourier integrals and classical function spaces", Arch. Math., 2008; 91: pp. 49-62. doi:10.1007/s00013-008-2626-8

Peleshenko B.I. "Absolute convergence of Fourier integrals and Lipschitz classes", Res. Math., 2011; 16: pp. 102-108. (in Russian)

DOI: https://doi.org/10.15421/241318



  • There are currently no refbacks.

Copyright (c) 2013 B.I. Peleshenko, T.N. Semirenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Registered in

ISSN (Online): 2664-5009
ISSN (Print): 2664-4991