### Approximation of unbounded functionals by the bounded ones in Hilbert space

#### Abstract

#### Keywords

#### Full Text:

PDF (Русский)#### References

Arestov V.V., Gabushin V.N. "The best approximation of unbounded operators by the bounded ones", *Izv. vuzov. Matematika*, 1995; 11: pp. 42-63. (in Russian)

Arestov V.V. "Approximation of unbounded operators by the bounded ones and related extremum problems", *Uspekhi mat. nauk*, 1996; 51(6): pp. 88-124. (in Russian) doi:10.1070/RM1996v051n06ABEH003001

Akhiezer N.I., Glazman I.M. *Theory of linear operators in Hilbert space*, Moscow, 1966; 544 p. (in Russian)

Babenko V.F., Bilichenko R.O. "Inequalities of Taikov type for self-adjoint operators in Hilbert space", *Trudy IPMM*, 2010; 21: pp. 11-18. (in Russian)

Berezanskij Yu.M., Us G.F., Sheftel' Z.G. *Functional analysis*, Kyiv, 1990; 600 p. (in Russian)

Korneichuk N.P., Babenko V.F., Kofanov V.A., Pichugov S.A. *Inequalities for derivatives and their applications*, Nauk. dumka, Kyiv, 2003; 590 p. (in Russian)

Stechkin S.B. "Inequalities between norms of derivatives of arbitrary function", *Acta scient. math.*, 1965; 26: pp. 225-230. (in Russian)

Stechkin S.B. "The best approximation of linear operators", *Matem. zametki*, 1967; 1(2): pp. 137-148. (in Russian) doi:10.1007/BF01268056

Taikov L.V. "Inequalities of Kolmogorov type and the best formulas of numeric differentiation", *Matem. zametki*, 1968; 4(2): pp. 223-238. (in Russian) doi:10.1007/BF01094964

Shadrin A.Yu. "Inequalities of Kolmogorov type and estimates of spline-interpolation for periodic classes $$$W^m_2$$$", *Matem. zametki*, 1990; 48(4): pp. 132-139. (in Russian) doi:10.1007/BF01139609

DOI: https://doi.org/10.15421/241201

### Refbacks

- There are currently no refbacks.

Copyright (c) 2012 V.F. Babenko, R.O. Bilichenko

This work is licensed under a Creative Commons Attribution 4.0 International License.