### Bernstein type inequalities for splines

#### Abstract

#### Keywords

#### Full Text:

PDF (Русский)#### References

Korneichuk N.P. *Exact constants in approximation theory*, Nauka, Moscow, 1987. (in Russian)

Tikhomirov V.M. "Set widths in functional spaces and theory of the best approximations", *Uspekhi mat. nauk*, 1960; 15(3): pp. 81-120. (in Russian)

Subbotin Yu.N. "On the piecewise-polynomial interpolation", *Mat. zametki*, 1967; 1(1): pp. 24-29. (in Russian)

Babenko V.F., Pichugov S.A. "Bernstein type inequalities for polynomial splines in $$$L_2$$$ space", *Ukrainian Math. J.*, 1991; 43(3): pp. 420-422. (in Russian)

Korneichuk N.P., Babenko V.F., Ligun A.A. *Extremum properties of polynomials and splines*, Nauk. dumka, Kyiv, 1992. (in Russian)

Magaril-Il'yaev G.G. "On the best approximation of functional classes by splines on the real domain", *Trudy Matematicheskogo instituta RAN*, 1992; 194: pp. 148-159. (in Russian)

Babenko V.F., Zontov V.A. "Inequalities of Bernstein type for splines defined on the real domain", *Ukrainian Math. J.*, 2011; 63(5): pp. 603-611. (in Russian)

Babenko V.F., Spektor S.A. "Inequalities of Bernstein type for splines in $$$L_2(\mathbb{R})$$$ space", *Dnipr. Univ. Math. Bull.*, 2008; 16(6/1): pp. 21-27. (in Russian)

Chui K. *Introduction to wavelets*, Moscow, 2008. (in Russian)

### Refbacks

- There are currently no refbacks.

Copyright (c) 2012 V.F. Babenko, V.A. Zontov

This work is licensed under a Creative Commons Attribution 4.0 International License.

#### Registered in

Not much? See «Misleading Metrics» [web-archive] (by J. Beall), «The story of fake impact factor companies ...» (by M. Jalalian); on the other hand, see «Citation Statistics» (by R. Adler, J. Ewing, P. Taylor)