### Sharp Remez-type inequalities of various metrics for the best approximations by a constant

#### Abstract

#### Keywords

#### Full Text:

PDF (Русский)#### References

Bojanov B., Naidenov N. "An extension of the Landau-Kolmogorov inequality. Solution of a problem of Erdös", *J. d'Analyse Mathematique*, 1999; 78: pp. 263-280.

Kofanov V.A. "Exact upper bounds of norms of functions and their derivatives on the classes of functions with given comparison function", *Ukrainian Math. J.*, 2011; 63(7): pp. 969-984. (in Russian)

Remes E. "Sur une propriete еxtremale des polynomes de Tchebychef", *Zapiski naukovo-doslid. in-tu matematyky i mekhaniky ta Kharkiv. mat. tov-va Kharkiv. derzh. un-tu. Seriya 4*, 1936; 13(1): pp. 93-95. (in French)

Ganzburg M.I. "On a Remez-type inequality for trigonometric polynomials", *J. of Approximation Theory*, 2012; 164: pp. 1233-1237.

Nursultanov E., Tikhonov S. "A sharp Remez inequality for trigonometric polynomials", *Constructive Approximation*, 2013; 38: pp. 101-132.

Borwein P., Erdelyi T. *Polynomials and polynomial inequalities*, New York, Springer, 1995.

Ganzburg M.I. "Polynomial inequalities on measurable sets and their applications", *Constructive Approximation*, 2001; 17: pp. 275-306.

Kofanov V.A. "Sharp Remez-type inequalities for differentiable periodic functions, polynomials and splines", *Ukrainian Math. J.*, 2016; 68(2): pp. 227-240. (in Russian)

Korneichuk N.P., Babenko V.F., Ligun A.A. *Extremum properties of polynomials and splines*, Naukova dumka, Kyiv, 1992. (in Russian)

DOI: https://dx.doi.org/10.15421/241703

### Refbacks

- There are currently no refbacks.

Copyright (c) 2017 A.Ye. Haidabura, V.A. Kofanov

This work is licensed under a Creative Commons Attribution 4.0 International License.