Properties and approximation of integrable functions

V.P. Motornyi (Oles Honchar Dnipropetrovsk National University)
U.P. Babyak (Oles Honchar Dnipropetrovsk National University)
K.R. Studenikina (Oles Honchar Dnipropetrovsk National University)
M.V. Shtats'ka (Oles Honchar Dnipropetrovsk National University)


Some properties of the functions integrable on the segment were considered in this article. Estimates for approximation are obtained.


modulus of continuity; integral; function


Motornyi V.P. "Approximation of functions by algebraic polynomials in $$$L_p$$$ metric", Izv. AN SSSR. Ser.: Matematika, 1971; 35(4): pp. 874-899. (in Russian) doi:10.1070/IM1971v005n04ABEH001122

Ul'yanov P.L. "On series by Haar system", Matem. sbornik, 1964; 63(3): pp. 356-391. (in Russian)

Ul'yanov P.L. "Inclusion of certain classes $$$H_p^{\omega}$$$ of functions", Izvestiya AN USSR. Ser. matem., 1968; 32(3): pp. 649-686. (in Russian) doi:10.1070/IM1968v002n03ABEH000650

Timan A.F. Approximation theory for real-variable functions, Fizmatgiz, Moscow, 1960; 624 p. (in Russian)

Khodak L.B. Some problems of approximation of non-periodic functions by algebraic polynomials: Diss. Cand. Phys.-Math. Sc., Dnipropetrovsk, 1979; 108 p. (in Russian)

Motornyi V.P., Klimenko M.S. "Mean approximation of functions by algebraic polynomials", Res. Math., 2012; 17: pp. 106-117. (in Ukrainian) doi:10.15421/241215




  • There are currently no refbacks.

Copyright (c) 2017 V.P. Motornyi, U.P. Babyak, K.R. Studenikina, M.V. Shtats'ka

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Registered in

ISSN (Online): 2664-5009
ISSN (Print): 2664-4991