Structure of finite groups, in which any pronormal subgroup is either normal or abnormal
Abstract
A subgroup $$$H$$$ of a group $$$G$$$ is said to be abnormal in $$$G$$$ if, for each element $$$g \in G$$$, we have $$$g \in {<}H, H^g{>}$$$. A subgroup $$$H$$$ of a group $$$G$$$ is said to be pronormal in $$$G$$$ if, for each element $$$g \in G$$$, the subgroups $$$H$$$ and $$$H^g$$$ are conjugate in $$${<}H, H^g{>}$$$. We describe all finite groups, each pronormal subgroup in which is either normal or abnormal.
Keywords
abnormal subgroup; pronormal subgroup
Full Text:
PDF (Українська)References
Ballester-Bolinches A., Shemetkov L.A. "On normalizers of Sylow subgroups in finite groups", Siberian Math. J., 1999; 40(1): pp. 3-5. (in Russian) doi:10.1007/BF02674284
Pypka A.A., Chupordia V.A. "On some types of antinormal subgroups", Res. Math., 2010; 15: pp. 141-144. (in Ukrainian)
Carter R.W. "Nilpotent self-normalizing subgroups of soluble groups", Math. Zeitschr., 1961; 75: pp. 136-139. doi:10.1007/BF01211016
Hall P. "On the System Normalizers of a Soluble Group", Proc. London Math. Soc., 1938; 43(1): pp. 507-528. doi:10.1112/plms/s2-43.6.507
DOI: https://doi.org/10.15421/241116
Refbacks
- There are currently no refbacks.
Copyright (c) 2011 A.A. Pypka
This work is licensed under a Creative Commons Attribution 4.0 International License.