Characterization in terms of K-functionals of quasilinear operators of weak types $$$\left( \Lambda_{\varphi_0, 1}, \Lambda_{\psi_0, \infty} \right)$$$, $$$\left( \Lambda_{\varphi_1, 1}, \Lambda_{\psi_1, 1} \right)$$$
Abstract
Full Text:
PDF (Русский)References
Berg J., Lofstrom J. Interpolation of spaces. Introduction, 1980. (in Russian)
Dmitriev V.I. "To interpolation theorem", Dokl. AN SSSR, 1974; 215(3): pp. 518-521. (in Russian)
Krein S.G., Petunin Yu.I., Semyonov Ye.M. Interpolation of linear operators, Nauka, Moscow, 1978; 400 p. (in Russian)
Natanson I.P. Theory of real variable functions, Nauka, Moscow, 1974. (in Russian)
Peleshenko B.I. "On operators of weak type $$$(\phi_0, \psi_0, \phi_1, \psi_1)$$$", Works of Ukrainian Math. Congress-2001. Functional Analysis, Kyiv, 2002; pp. 234-244. (in Russian)
Bennett C., Rudnick K. On Lorentz-Zygmund spaces, Warszava, Panstw. wydawn. nauk., 1980; 73 p.
Holmstedt T. "Interpolation of quasi-normed spaces", Math. Scand., 1970; 26: pp. 177-199.
Lorentz G.G., Shimogaki T.J. "Interpolation theorems for operators in function spaces", J. Funct. Anal., 1968; 2: pp. 31-51. doi:10.1016/0022-1236(68)90024-4
Peetre J. "Nouvelles propriétés d'éspaces d'interpolation", C.R. Acad. Sci. Paris, 1963; 256: pp. 1424-1426. (in French)
DOI: https://doi.org/10.15421/240815
Refbacks
- There are currently no refbacks.
Copyright (c) 2008 B.I. Peleshenko
This work is licensed under a Creative Commons Attribution 4.0 International License.