On the best quadrature formula of the form $$$\sum\limits_{k=1}^n p_k f(x_k)$$$ on the class $$$W^2 H^{\omega}$$$

V.P. Motornyi (Dnipropetrovsk State University)
A.O. Kushch (Dnipropetrovsk State University)

Abstract


We show that the formula of rectangles is the best on the class $$$W^2 H^{\omega}$$$ among all quadrature formulas of the form $$$\sum\limits_{k=1}^n p_k f(x_k)$$$.

References


Motornyi V.P. "On the best quadrature formula of the form $$$\sum\limits_{k=1}^n p_k f(x_k)$$$ formula on some classes of periodic differentiable functions", Izv. AN SSSR. Ser. Matem., 1974; 38(3): pp. 583-614. (in Russian) doi:10.1070/IM1974v008n03ABEH002122

Malozemov V.N. "On accuracy of quadrature formula of rectangles for periodic functions", Matem. zametki, 1967; 2(4): pp. 357-360. (in Russian) doi:10.1007/BF01093645

Malozemov V.N. "Estimate of accuracy of one quadrature formula for periodic functions", Vestn. Leningrad. un-ta, 1967; 1. (in Russian)

Korneichuk N.P. "On extremal properties of periodic functions", Dokl. AN SSSR, 1962; A(8). (in Russian)

Korneichuk N.P. Extremum problems in approximation theory, 1976. (in Russian)




DOI: https://doi.org/10.15421/248710

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 1987 V.P. Motornyi, A.O. Kushch

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU