On the best quadrature formula of the form $$$\sum\limits_{k=1}^n p_k f(x_k)$$$ on the class $$$W^2 H^{\omega}$$$
Abstract
We show that the formula of rectangles is the best on the class $$$W^2 H^{\omega}$$$ among all quadrature formulas of the form $$$\sum\limits_{k=1}^n p_k f(x_k)$$$.
Full Text:
PDF (Русский)References
Motornyi V.P. "On the best quadrature formula of the form $$$\sum\limits_{k=1}^n p_k f(x_k)$$$ formula on some classes of periodic differentiable functions", Izv. AN SSSR. Ser. Matem., 1974; 38(3): pp. 583-614. (in Russian) doi:10.1070/IM1974v008n03ABEH002122
Malozemov V.N. "On accuracy of quadrature formula of rectangles for periodic functions", Matem. zametki, 1967; 2(4): pp. 357-360. (in Russian) doi:10.1007/BF01093645
Malozemov V.N. "Estimate of accuracy of one quadrature formula for periodic functions", Vestn. Leningrad. un-ta, 1967; 1. (in Russian)
Korneichuk N.P. "On extremal properties of periodic functions", Dokl. AN SSSR, 1962; A(8). (in Russian)
Korneichuk N.P. Extremum problems in approximation theory, 1976. (in Russian)
DOI: https://doi.org/10.15421/248710
Refbacks
- There are currently no refbacks.
Copyright (c) 1987 V.P. Motornyi, A.O. Kushch
This work is licensed under a Creative Commons Attribution 4.0 International License.