On the best quadrature formula of the form $$$\sum\limits_{k=1}^n p_k f(x_k)$$$ on the class $$$W^2 H^{\omega}$$$
Abstract
We show that the formula of rectangles is the best on the class $$$W^2 H^{\omega}$$$ among all quadrature formulas of the form $$$\sum\limits_{k=1}^n p_k f(x_k)$$$.
Full Text:
PDF (Русский)References
Malozemov V.N. "On accuracy of quadrature formula of rectangles for periodic functions", Math. Notes, 1967; 2(4): pp. 357-360. doi:10.1007/BF01093645
Motornyi V.P. "On the best quadrature formula of the form $$$\sum\limits_{k=1}^n p_k f(x_k)$$$ formula on some classes of periodic differentiable functions", Izv. AN sssr. Ser. Matem., 1974; 38(3): pp. 583-614.
Malozemov V.N. "Estimate of accuracy of one quadrature formula for periodic functions", Vestn. LGU, 1967; 1.
Korneichuk N.P. "On extremal properties of periodic functions", Dokl. AN sssr, 1962; A(8).
Korneichuk N.P. Extremum problems in approximation theory, 1976.
DOI: https://doi.org/10.15421/248710
Refbacks
- There are currently no refbacks.
Copyright (c) 1987 V.P. Motornyi, A.O. Kushch

This work is licensed under a Creative Commons Attribution 4.0 International License.











