On approximation of continuous functions by piecewise-continuous ones

T.V. Nakonechnaia (Dnipropetrovsk State University)
T.A. Grankina (Dnipropetrovsk State University)

Abstract


Let $$$f(x) \in W^r H_{\omega} [-\pi, \pi]$$$ ($$$r = 0;1$$$) and $$$x_k = \frac{k\pi}{n} = h \cdot k$$$ ($$$k = 0, \pm 1, \ldots, \pm n$$$). We call $$$2\pi$$$-periodic function $$$S_2(f, x)$$$ an interpolation spline of order 2 if, in any segment $$$[x_k - \frac{h}{2}, x_k + \frac{h}{2}]$$$, it is the Lagrange polynomial of second degree that interpolates the function $$$f(x)$$$ in the points $$$x_{k-1}$$$, $$$x_k$$$, $$$x_{k+1}$$$.
We establish that for any concave modulus of continuity $$$\omega (t)$$$ the equalities hold:
$$\sup\limits_{f \in H_{\omega}[-\pi, \pi]} \| f - S_2(f) \|_{\infty} = \omega(\frac{h}{2}) + \frac{1}{8} \omega (h),$$
$$\sup\limits_{f \in W^1 H_{\omega}[-\pi, \pi]} \| f - S_2(f) \|_{\infty} = \frac{65}{192} \int\limits_0^{\frac{4}{5}h} \omega (t) dt + \frac{5}{48} \int\limits_{\frac{4}{5}h}^{\frac{6}{5}h} \omega (t) dt$$

References


Korneichuk N.P., Ligun A.A., Doronin V.G. Approximation with constraints, 1982. (in Ukrainian)

Storchai V.F. "On deviation of broken lines in $$$L_p$$$ metric", Math. Notes, 1969; 5(1): pp. 31-37. doi:10.1007/BF01098710


Korneichuk N.P. Extremum problems in approximation theory, 1976.

Korneichuk N.P. "Extreme values of functionals and the best approximation on classes of periodic functions", Izv. AN sssr. Ser. Matem., 1971; 35(1): pp. 93-124.

Malozemov V.N. "On deviation of broken lines", Vestnik LGU, 1966; 7(2): pp. 150-153.

Storchai V.F., Ligun A.A. "On deviation of some interpolative splines in the metrics $$$C$$$ and $$$L_p$$$", Theory of func. approx. and its applic., 1974.

Ligun A.A., Malysheva A.D. "On deviation of spline-functions obtained by averaging piecewise-linear ones", Izv. VUZov. Matem., 1977; 1.




DOI: https://doi.org/10.15421/248711

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 1987 T.V. Nakonechnaia, T.A. Grankina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU