On approximation of continuous functions by piecewise-continuous ones
Abstract
We establish that for any concave modulus of continuity $$$\omega (t)$$$ the equalities hold:
$$\sup\limits_{f \in H_{\omega}[-\pi, \pi]} \| f - S_2(f) \|_{\infty} = \omega(\frac{h}{2}) + \frac{1}{8} \omega (h),$$
$$\sup\limits_{f \in W^1 H_{\omega}[-\pi, \pi]} \| f - S_2(f) \|_{\infty} = \frac{65}{192} \int\limits_0^{\frac{4}{5}h} \omega (t) dt + \frac{5}{48} \int\limits_{\frac{4}{5}h}^{\frac{6}{5}h} \omega (t) dt$$
Full Text:
PDF (Русский)References
Korneichuk N.P., Ligun A.A., Doronin V.G. Approximation with constraints, 1982. (in Ukrainian)
Storchai V.F. "On deviation of broken lines in $$$L_p$$$ metric", Math. Notes, 1969; 5(1): pp. 31-37. doi:10.1007/BF01098710
Korneichuk N.P. Extremum problems in approximation theory, 1976.
Korneichuk N.P. "Extreme values of functionals and the best approximation on classes of periodic functions", Izv. AN sssr. Ser. Matem., 1971; 35(1): pp. 93-124.
Malozemov V.N. "On deviation of broken lines", Vestnik LGU, 1966; 7(2): pp. 150-153.
Storchai V.F., Ligun A.A. "On deviation of some interpolative splines in the metrics $$$C$$$ and $$$L_p$$$", Theory of func. approx. and its applic., 1974.
Ligun A.A., Malysheva A.D. "On deviation of spline-functions obtained by averaging piecewise-linear ones", Izv. VUZov. Matem., 1977; 1.
DOI: https://doi.org/10.15421/248711
Refbacks
- There are currently no refbacks.
Copyright (c) 1987 T.V. Nakonechnaia, T.A. Grankina

This work is licensed under a Creative Commons Attribution 4.0 International License.











