On approximation of continuous functions by piecewise-continuous ones
Abstract
We establish that for any concave modulus of continuity $$$\omega (t)$$$ the equalities hold:
$$\sup\limits_{f \in H_{\omega}[-\pi, \pi]} \| f - S_2(f) \|_{\infty} = \omega(\frac{h}{2}) + \frac{1}{8} \omega (h),$$
$$\sup\limits_{f \in W^1 H_{\omega}[-\pi, \pi]} \| f - S_2(f) \|_{\infty} = \frac{65}{192} \int\limits_0^{\frac{4}{5}h} \omega (t) dt + \frac{5}{48} \int\limits_{\frac{4}{5}h}^{\frac{6}{5}h} \omega (t) dt$$
Full Text:
PDF (Русский)References
Korneichuk N.P. Extremum problems in approximation theory, 1976. (in Russian)
Korneichuk N.P., Ligun A.A., Doronin V.G. Approximation with constraints, 1982. (in Ukrainian)
Korneichuk N.P. "Extreme values of functionals and the best approximation on classes of periodic functions", Izv. AN SSSR. Ser. Matem., 1971; 35(1): pp. 93-124. (in Russian) doi:10.1070/IM1971v005n01ABEH001015
Malozemov V.N. "On deviation of broken lines", Vestnik LGU, 1966; 7(2): pp. 150-153. (in Russian)
Storchai V.F. "On deviation of broken lines in $$$L_p$$$ metric", Matem. zametki, 1969; 5(1): pp. 31-37. (in Russian) doi:10.1007/BF01098710
Storchai V.F., Ligun A.A. "On deviation of some interpolative splines in the metrics $$$C$$$ and $$$L_p$$$", Theory of func. approx. and its applic., 1974. (in Russian)
Ligun A.A., Malysheva A.D. "On deviation of spline-functions obtained by averaging piecewise-linear ones", Izv. vuzov. Seriia Matem., 1977; 1. (in Russian)
DOI: https://doi.org/10.15421/248711
Refbacks
- There are currently no refbacks.
Copyright (c) 1987 T.V. Nakonechnaia, T.A. Grankina
This work is licensed under a Creative Commons Attribution 4.0 International License.