On absolute summability of Fourier integrals with multipliers
Abstract
We obtain the conditions for function that generates functional method and for the multiplier $$$\mu(y)$$$ that are sufficient for absolute summability of
$$\int\limits_0^{\infty} \mu (y) B(y, t) dy$$
where $$$\int\limits_0^{\infty} B(y, t) dy$$$ is the Fourier integral of a function $$$f(t) \in L_{(-\infty, \infty)}$$$.
$$\int\limits_0^{\infty} \mu (y) B(y, t) dy$$
where $$$\int\limits_0^{\infty} B(y, t) dy$$$ is the Fourier integral of a function $$$f(t) \in L_{(-\infty, \infty)}$$$.
Full Text:
PDF (Русский)References
Voronoi G.F. Extension of concept of infinite series sum limit. In: Sobr. soch. in 3 vol., Kyiv, 1952; 3: pp. 9-10. (in Russian)
Titchmarsh E.C. Introduction to the theory of Fourier integral, Gostekhizdat, 1948. (in Russian)
Bojtsun L.G. "On absolute summability of conjugate Fourier integrals by method of G.F. Voronoi", Izv. vuzov. Ser. Matematika, 1967; 6: pp. 11-21. (in Russian)
DOI: https://doi.org/10.15421/248713
Refbacks
- There are currently no refbacks.
Copyright (c) 1987 L.G. Bojtsun, A.I. Khaliuzova
This work is licensed under a Creative Commons Attribution 4.0 International License.