On absolute summability of Fourier integrals with multipliers
Abstract
We obtain the conditions for function that generates functional method and for the multiplier $$$\mu(y)$$$ that are sufficient for absolute summability of
$$\int\limits_0^{\infty} \mu (y) B(y, t) dy$$
where $$$\int\limits_0^{\infty} B(y, t) dy$$$ is the Fourier integral of a function $$$f(t) \in L_{(-\infty, \infty)}$$$.
$$\int\limits_0^{\infty} \mu (y) B(y, t) dy$$
where $$$\int\limits_0^{\infty} B(y, t) dy$$$ is the Fourier integral of a function $$$f(t) \in L_{(-\infty, \infty)}$$$.
Full Text:
PDF (Русский)References
Voronoi G.F. Extension of concept of infinite series sum limit. In: Sobr. soch. in 3 vol., 1952; 3: pp. 9-10.
Titchmarsh E.C. Introduction to the theory of Fourier integral, Gostekhizdat, 1948.
Bojtsun L.G. "On absolute summability of conjugate Fourier integrals by method of G.F. Voronoi", Izv. VUZov. Matem., 1967; 6: pp. 11-21.
DOI: https://doi.org/10.15421/248713
Refbacks
- There are currently no refbacks.
Copyright (c) 1987 L.G. Bojtsun, A.I. Khaliuzova

This work is licensed under a Creative Commons Attribution 4.0 International License.











