Description of the automorphism groups of some Leibniz algebras

L.A. Kurdachenko (Oles Honchar Dnipro National University), https://orcid.org/0000-0002-6368-7319
O.O. Pypka (Oles Honchar Dnipro National University), https://orcid.org/0000-0003-0837-5395
M.M. Semko (State Tax University), https://orcid.org/0000-0003-0123-4872

Abstract


Let $$$L$$$ be an algebra over a field $$$F$$$ with the binary operations $$$+$$$ and $$$[,]$$$. Then $$$L$$$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $$$[[a,b],c]=[a,[b,c]]-[b,[a,c]]$$$ for all elements $$$a,b,c\in L$$$. A linear transformation $$$f$$$ of $$$L$$$ is called an endomorphism of $$$L$$$, if $$$f([a,b])=[f(a),f(b)]$$$ for all elements $$$a,b\in L$$$. A bijective endomorphism of $$$L$$$ is called an automorphism of $$$L$$$. It is easy to show that the set of all automorphisms of the Leibniz algebra is a group with respect to the operation of multiplication of automorphisms. The description of the structure of the automorphism groups of Leibniz algebras is one of the natural and important problems of the general Leibniz algebra theory. The main goal of this article is to describe the structure of the automorphism group of a certain type of nilpotent three-dimensional Leibniz algebras.

Keywords


Leibniz algebra; automorphism group

MSC 2020


17A32; 17A36

Full Text:

PDF

References


Ayupov Sh.A., Omirov B.A., Rakhimov I.S. Leibniz Algebras: Structure and Classification, CRC Press, Taylor&Francis Group, 2020.

Blokh A. "On a generalization of the concept of Lie algebra", Dokl. Akad. nauk USSR, 1965; 165: 471-473. (in Russian)

Chupordia V.A., Pypka A.A., Semko N.N., Yashchuk V.S. "Leibniz algebras: a brief review of current results", Carpathian Math. Publ., 2019; 11(2): pp. 250-257. doi:10.15330/cmp.11.2.250-257

Kirichenko V.V., Kurdachenko L.A., Pypka A.A., Subbotin I.Ya. "Some aspects of Leibniz algebra theory", Algebra Discrete Math., 2017; 24(1): pp. 1-33.

Kurdachenko L.A., Otal J., Pypka A.A. "Relationships between factors of canonical central series of Leibniz algebras", Eur. J. Math., 2016; 2: pp. 565-577. doi:10.1007/s40879-016-0093-5

Kurdachenko L.A., Pypka O.O., Subbotin I.Ya. "On the structure of low-dimensional Leibniz algebras: some revision", Algebra Discrete Math., 2022; 34(1): pp. 68-104. doi:10.12958/adm2036

Kurdachenko L.A., Pypka A.A., Subbotin I.Ya. "On the automorphism groups of some Leibniz algebras", Int. J. Group Theory, 2023; 12(1): pp. 1-20. doi:10.22108/IJGT.2021.130057.1735

Kurdachenko L.A., Pypka O.O., Velychko T.V. "On the automorphism groups for some Leibniz algebras of low dimensions", Ukrainian Math. J., 2023; 74(10): pp. 1526-1546. doi:10.1007/s11253-023-02153-2

Kurdachenko L.A., Semko N.N., Subbotin I.Ya. "Applying group theory philosophy to Leibniz algebras: some new developments", Adv. Group Theory Appl., 2020; 9: pp. 71-121. doi:10.32037/agta-2020-004

Kurdachenko L.A., Subbotin I.Ya., Yashchuk V.S. "On the endomorphisms and derivations of some Leibniz algebras", J. Algebra Appl., 2022; 2450002. doi:10.1142/S0219498824500026

Loday J.-L. Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301, Springer Verlag, 1992. doi:10.1007/978-3-662-11389-9

Loday J.-L. "Une version non commutative des algèbres de Lie: les algèbres de Leibniz", Enseign. Math., 1993; 39: pp. 269-293. (in French)

Loday J.-L., Pirashvili T. "Universal enveloping algebras of Leibniz algebras and (co)homology", Math. Ann., 1993; 296: pp. 139-158. doi:10.1007/BF01445099

Subbotin I.Ya. "Methods of group theory in Leibniz algebras: some compelling results", Res. Math., 2021; 29(2): pp. 44-54. doi:10.15421/242108




DOI: https://doi.org/10.15421/242305

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 L.A. Kurdachenko, O.O. Pypka, M.M. Semko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU