Some results on ultrametric 2-normed spaces

J. Ettayb (Sidi Mohamed Ben Abdellah University), https://orcid.org/0000-0002-4819-943X

Abstract


In this paper, we study the ultrametric 2-normed spaces and the ultrametric 2-Banach spaces. In particular, we establish some results on Cauchy sequences in ultrametric 2-normed spaces. Also, we introduce and study the notion of bounded linear 2-functionals on ultrametric 2-Banach spaces and we give some of its properties. On the other hand, the new norm on the ultrametric 2-normed space is constructed. The concepts of closed operators between ultrametric 2-normed spaces and $$$b$$$-linear functionals in ultrametric 2-normed spaces are introduced. Finally, a necessary and sufficient condition for a linear operator to be closed in terms of its graph is proved and some results on bounded $$$b$$$-linear functionals in ultrametric 2-normed spaces are given.

Keywords


ultrametric 2-Banach spaces; linear maps; bounded linear 2-functionals

MSC 2020


Pri 47A05, Sec 47A30, 46S10

Full Text:

PDF

References


Amyari M., Sadeghi G. "Isometrics in non-Archimedean strictly convex and strictly 2-convex 2-normed spaces", in Nonlinear Analysis and Variational Problems, Springer, New York, 2009; pp. 13-22. doi:10.1007/978-1-4419-0158-3_2

Diagana T., Ramaroson F. Non-archimedean Operators Theory, Springer, 2016.

Freese R., Cho Y.J. Geometry of Linear 2-normed Spaces, Nova Science Publ., 2001.

Gähler S. "Lineare 2-Normierte Räume", Math. Nachr., 1964; 28: pp. 1-43. (in German) doi:10.1002/mana.19640280102

Gähler S. "2-metrische Räume und ihre topologische Struktur", Math. Nachr., 1963; 26: pp. 115-122. (in German) doi:10.1002/mana.19630260109

Gähler S., Siddique A.H., Gupta S.C. "Contribution to non-Archimedean functional analysis", Math. Nachr., 1975; 69: pp. 162-175. doi:10.1002/mana.19750690116

Ghosh P., Roy S., Samanta T.K. "Uniform Boundedness Principle and Hahn-Banach Theorem for $$$b$$$-linear functional related to linear 2-normed space", 2021. arXiv:2101.00653

Koblitz N. $$$p$$$-adic Analysis: a Short Course on Recent Work, Cambridge Univ. Press, 1980.

Schikhof W.H. Ultrametric Calculus. An Introduction to $$$p$$$-adic Analysis, Cambridge Univ. Press, 1984.

Schneider P. Nonarchimedean Functional Analysis, Springer, 2002.

van Rooij A.C.M.: Non-Archimedean functional analysis, Monographs and Textbooks in Pure and Applied Math. Marcel Dekker, Inc., 1978.

Wang Z., Park C., Shin D.Y.: "Additive $$$\rho$$$-functional inequalities in non-Archimedean 2-normed spaces", AIMS Mathematics, 2020; 6(2): pp. 1905-1919. doi:10.3934/math.2021116

White A. "2-Banach spaces", Math. Nachr., 1969; 42(1): pp. 43-60. doi:10.1002/mana.19690420104




DOI: https://doi.org/10.15421/242404

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 J. Ettayb

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU