Ostrowski-type inequalities in abstract distance spaces

V.F. Babenko (Oles Honchar Dnipro National University), https://orcid.org/0000-0001-6677-1914
V.V. Babenko (Drake University), https://orcid.org/0000-0003-4859-4437
O.V. Kovalenko (Oles Honchar Dnipro National University), https://orcid.org/0000-0002-0446-1125

Abstract


For non-empty sets X we define  notions of distance and pseudo metric with values in a partially ordered set that has a  smallest element $$$\theta $$$. If $$$h_X$$$ is a distance in $$$X$$$ (respectively, a pseudo metric in $$$X$$$), then the pair $$$(X,h_X)$$$ is called a distance (respectively, a pseudo metric) space. If $$$(T,h_T)$$$ and $$$(X,h_X)$$$ are pseudo metric spaces, $$$(Y,h_Y)$$$ is a distance space, and $$$H(T,X)$$$ is a class of Lipschitz mappings $$$f\colon T\to X$$$, for a broad family of mappings $$$\Lambda\colon H  (T,X)\to Y$$$, we obtain a sharp inequality that estimates the deviation $$$h_Y(\Lambda f(\cdot),\Lambda f(t))$$$ in terms of the function $$$h_T(\cdot, t)$$$. We also show that many known estimates of such kind are contained in our general result.

Keywords


Ostrowski-type inequality; distance space; pseudo metric space; Lipschitz function; modulus of continuity

MSC 2020


41A65; 41A17; 41A44

Full Text:

PDF

References


Anastassiou G.A. "Fuzzy Ostrowski type inequalities", Comput. Appl. Math., 2003; 22(2): рр. 279-292. doi:10.1590/S0101-82052003000200007

Anastassiou G.A. "Ostrowski and Landau inequalities for Banach space valued functions", Math. Comput. Model., 2012; 55: pp. 312-329. doi:10.1016/j.mcm.2011.08.003

Aseev S.M. "Quasilinear operators and their application in the theory of multivalued mappings", Proc. Steklov Inst. Math., 1986; 167: pp. 23-52. (in Russian)

Babenko V., Babenko V., Kovalenko O. "Optimal recovery of monotone operators in partially ordered L-spaces", Numer. Func. Anal. Opt., 2020; 41(11): pp. 1373-1397. doi:10.1080/01630563.2020.1775251

Babenko V., Babenko V., Kovalenko O. "Fixed point theorems in Hausdorff M-distance spaces", arXiv, 2021; doi:10.48550/arXiv.2111.13625

Babenko V., Babenko V., Kovalenko O. "Fixed point theorems in M-distance spaces", arXiv, 2021; doi:10.48550/arXiv.2103.13914

Babenko V., Babenko V., Kovalenko O. "Korneichuk-Stechkin lemma, Ostrowski and Landau inequalities, and optimal recovery problems for L-space valued functions", Numer. Func. Anal. Opt., 2023; 44(12): pp. 1309-1341. doi:10.1080/01630563.2023.2246540

Babenko V., Babenko V., Kovalenko O., Polishchuk M. "Optimal recovery of operators in function L-spaces", Anal. Math., 2021; 47: pp. 13-32. doi:10.1007/s10476-021-0065-y

Babenko V.F., Babenko V.V., Polischuk M.V. "On the optimal recovery of integrals of set-valued functions", Ukrainian Math. J., 2016; 67(9): pp. 1306-1315. doi:10.1007/s11253-016-1154-0

Babenko V.F., Babenko V.V., Kovalenko O.V., Parfinovych N.V. "General form of $$$\lambda,\varphi$$$-additive operators on spaces of L-space-valued functions", Res. Math.>, 2022; 30(1): pp. 3-9. doi:10.15421/242201

Bagdasarov S. "Chebyshev Splines and Kolmogorov Inequalities", Operator theory, Springer, 1998.

Dragomir S.S. "Ostrowski type inequalities for Lebesgue integral: a survey of recent results", Australian J. Math. Anal. Appl., 2017; 14(1): pp. 1-287.

Dragomir S.S., Rassias Th.M. Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Acad. Publ., Dordrecht/Boston/London, 2002.

Drozhzhina L.V. "On quadrature formulas for random processes", Dopovidi Akad. Nauk Ukrain. RSR, Ser. A, 1975; 9: pp. 775-777. (in Ukrainian)

Dyn N., Farkhi E., Mokhov A. Approximation of Set-valued Functions: Adaptation of Classical Approximation Operators, World Scient. Publ. Co., 2014.

Janković S., Kadelburg Z., Radenović S. "On cone metric spaces: A survey", Nonlin. Anal. Theory, Methods, Appl., 2011; 74(7): pp. 2591-2601. doi:10.1016/j.na.2010.12.014

Kelley J.L. General Topology, The university series in Higher Mathematics, D. Van Nortrand Company (Canada) Ltd, 1964.

Kirk W., Shahzad N. Fixed Point Theory in Distance Spaces, Springer, New York, 2014.

Korneichuk N.P. Exact Constants in Approximation Theory, Encyclopedia of Math. and its Appl. Cambridge Univ. Press, 1991.

Kovalenko O. "On optimal recovery of integrals of random processes", J. Math. Anal. Appl., 2020; 487(1): 123949. doi:10.1016/j.jmaa.2020.123949

Kovalenko O. "On a general approach to some problems of approximation of operators", J. Math. Sci., 2024; 279: pp. 67-76. doi:10.1007/s10958-024-06987-4

Nikolsky S.M. "Fourier series of functions with a given modulus of continuity", Dokl. Akad. Nauk SSSR, 1946; 52(3): pp. 191-194. (in Russian)

Ostrowski A. "Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert", Comment. Math. Hel., 1937; 10: pp. 226-227. (in German) doi:10.1007/BF01214290

Stepanets A.I. Uniform Approximations by Trigonometric Polynomials, Walter de Gruyter GmbH & Co KG, 2018.

Vahrameev S.A. Applied Mathematics and Mathematical Software of Computers, MSU Publisher, 1980.

Zabrejko P.P. "K-metric and K-normed linear spaces: survey", Collect. Math., 1997; 48(4-5-6): pp. 825-859.




DOI: https://doi.org/10.15421/242416

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 V.F. Babenko, V.V. Babenko, O.V. Kovalenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU