More on fast decreasing trigonometric polynomials
Abstract
In a recent paper, for a fixed $$$m\in\mathbb N$$$, we introduced trigonometric polynomials
$$
L_n(x):=\frac1{h^m}\underbrace{\int_{-h/2}^{h/2}\dots\int_{-h/2}^{h/2}}_{m\,\text{times}}J_n(x+t_1+\cdots+t_m)\,dt_1\cdots\,dt_m,
$$
where $$$J_n$$$ is a Jackson-type kernel. In the current paper we show that $$$L_n$$$ and its first $$$m-1$$$ derivatives provide approximation to the $$$B$$$-spline of degree $$$m-1$$$ and its respective derivatives.
Keywords
MSC 2020
Full Text:
PDFReferences
DeVore R.A., Lorentz G.G. Constructive Approximation, Berlin, Springer, 1993.
DeVore R.A., Xiang M.Y. "Pointwise estimates for monotone polynomial approximation", Constr. Approx., 1985; 1: pp. 323-331. doi:10.1007/BF01890039
Leviatan D., Motorna O.V., Shevchuk I.A. "Fast Decreasing Trigonometric Polynomials and Applications", J. Fourier Anal. Appl., 2024; 30(3): 28. doi:10.1007/s00041-024-10080-4
Vyazovskaya M.S.,Pupashenko N.S. "Fast On the normalizing multiplier of the generalized Jackson kernel", Math. Notes., 2006; 80(1): pp. 19-26. Transl. from Matem. Zametki, 2006; 80(1): pp. 20-28. doi:10.1007/s11006-006-0103-x
DOI: https://doi.org/10.15421/242422
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 D. Leviatan, O.V. Motorna, I.O. Shevchuk
This work is licensed under a Creative Commons Attribution 4.0 International License.