The best $$$m$$$-term trigonometric approximations of the classes of periodic functions of one and many variables in the space $$$B_{q,1}$$$

K.V. Pozharska (Institute of Mathematics of NAS of Ukraine, Chemnitz University of Technology), https://orcid.org/0000-0001-7599-8117
A.S. Romanyuk (Institute of Mathematics of NAS of Ukraine), https://orcid.org/0000-0002-6268-0799

Abstract


Exact order estimates are obtained of the best $$$m$$$-term trigonometric approximations of the Nikol'skii-Besov classes $$$B^r_{p, \theta}$$$ of periodic functions of one and many variables in the space $$$B_{q,1}$$$. In the univariate case ($$$d=1$$$), we get the orders of the respective approximation characteristics on the classes $$$B^r_{p, \theta}$$$ as well as on the Sobolev classes $$$W^r_{p, {\boldsymbol{\alpha}}}$$$ in the space $$$B_{\infty,1}$$$ in the case $$$1\leqslant p \leqslant \infty$$$.

Keywords


Nikol'skii-Besov classes; Sobolev classes; best m-term trigonometric approximation

MSC 2020


42A10

Full Text:

PDF

References


Akishev G.A. "On the exact estimations of the best M-term approximation of the Besov class", Sib. Elektron. Mat. Izv., 2010; 7: pp. 255-274.

Basarkhanov D.B. "Nonlinear approximations of classes of periodic functions of many variables", Tr. Mat. Inst. Steklova, 2014; 284: pp. 8-37. (in Russian) doi:10.1134/S0371968514010026 English transl. in: Proc. Steklov Inst. Math., 2014; 284(1): pp. 2-31. doi:10.1134/S0081543814010027

Belinskii E.S. "Approximation by a “floating” system of exponentials on classes of smooth periodic functions", Matem. Sb., 1987; 132(174): pp. 20-27. English transl. in: Math. Sb. USSR, 1988; 60 (1): pp. 19-27.

Belinskii E.S. "Approximation by a “floating” system of exponentials on classes of periodic functions with bounded mixed derivative", In: Studies in the theory of functions of several real variables, in: Mathematics, Yaroslavl' State Univ., Yaroslavl', 1988: pp. 16-33.

Belinskii E.S. "Decomposition theorems and approximation by a “floating” system of exponentials", Trans. Amer. Math. Soc., 1998; 350: pp. 43-53. doi:10.1090/S0002-9947-98-01556-6

Besov O.V. "Investigation of one family of functional spaces in connection with the embedding and continuation theorems", Tr. Mat. Inst. Acad. Nauk SSSR, 1961; 60: pp. 42-81.

DeVore R.A., Temlyakov V.N. "Nonlinear approximation by trigonometric sums", J. Fourier Anal. Appl., 1995; 2(1): pp. 29-48. doi:10.1007/s00041-001-4021-8

Dũng D. "On nonlinear n-widths and n-term approximation", Vietnam J. Math., 1998; 26(2): pp. 165-176.

Dũng D. "Continuous algorithms in n-term approximation and non-linear width", J. Approx. Theory, 2000; 102(2): pp. 217-242. doi:10.1006/jath.1999.3399

Dũng D., Temlyakov V., Ullrich T. Hyperbolic cross approximation, Adv. Courses Math. Birkhäuser, CRM Barselona, 2018.

Fedunyk-Yaremchuk O.V., Hembars'ka S.B. "Best orthogonal trigonometric approximations of the Nikol'skii-Besov-type classes of periodic functions of one and several variables", Carpathian Math. Publ., 2022; 14(1): pp. 171-184. doi:10.15330/cmp.14.1.171-184

Hansen M., Sickel W. "Best m-term approximation and Sobolev-Besov spaces of dominating mixed smoothness — the case of compact embeddings", Constr. Approx., 2012; 36(1): pp. 1-51. doi:10.1007/s00365-012-9161-3

Jiang Y.J., Liu Y.P. "Average width and optimal recovery of multivariate Besov classes in $$$L_p(\mathbb{R}^d)$$$", J. Approx. Theory, 2000; 102(1): pp. 155-170. doi:10.1006/jath.1999.3384

Kashin B.S., Temlyakov V.N. "On best m-term approximations and the entropy of sets in the space $$$L^1$$$", Mat. Zametki, 1994; 56(5): pp. 57-86. English transl. in: Math. Notes, 1994; 56(5): pp. 1137-1157. doi:10.1007/BF02274662

Lizorkin P.I "Generalized Holder spaces $$$B^{(r)}_{p, \theta}$$$ and their correlations with the Sobolev spaces $$$L_p^{(r)}$$$", Sibirsk. Math. Zh., 1968; 9(5): pp. 1127-1152. (in Russian)

Nikol'skii S.M. "Inequalities for entire functions of finite power and their application to the theory of differentiable functions of many variables", Tr. Mat. Inst. Akad. Nauk SSSR, 1951; 38: pp. 244-278. (in Russian)

Romanyuk A.S. "Approximation of classes of periodic functions in several variables", Mat. Zametki, 2002; 71(1): pp. 109-121. English transl. in: Math. Notes, 2002; 71(1): pp. 98-109. doi:10.1023/A:1013982425195

Romanyuk A.S. "Best M-term trigonometric approximations of Besov classes of periodic functions of several variables", Izv. Ross. Akad. Nauk. Ser. Mat., 2003; 67(2): pp. 61-100. English transl. in: Izv. Math., 2003; 67(2): pp. 265-302. doi:10.1070/IM2003v067n02ABEH000427

Romanyuk A.S. "Bilinear and trigonometric approximations of periodic functions of several variables of Besov classes $$$B^r_{p, \theta}$$$", Izv. Ross. Akad. Nauk. Ser. Mat., 2006; 70(2): pp. 69-98. English transl. in: Izv. Math., 2006; 70(2): pp. 277-306. doi:10.1070/IM2006v070n02ABEH002313

Romanyuk A.S. "Best trigonometric approximations for some classes of periodic functions of several variables in the uniform metric", Mat. Zametki, 2007; 82(2): pp. 247-261. English transl. in: Math. Notes, 2007; 82(2): pp. 216-228. doi:10.1134/S0001434607070279

Romanyuk A.S. "Approximation characteristics of the isotropic classes of periodic functions of several variables", Ukrainsk. Mat. Zh., 2009; 61(4): pp. 513-523. English transl. in: Ukrainian Math. J., 2009; 61: pp. 613-626. doi:10.1007/s11253-009-0232-y

Romanyuk A.S. "Approximative characteristics of the classes of periodic functions of many variables", In: Proc. Inst. Math. Nat. Acad. Sci. Ukraine, 2012; 93.

Romanyuk A.S. "Best trigonometric and bilinear approximations of classes of functions of several variables", Mat. Zametki, 2013; 94(3): pp. 401-415. English transl. in: Math. Notes, 2013; 94(3): pp. 379-391. doi:10.1134/S0001434613090095

Romanyuk A.S., Romanyuk V.S. "Trigonometric and orthoprojection widths of classes of periodic functions of several variables", Ukrainsk. Mat. Zh., 2009; 61(10): pp. 1348-1366. English transl. in: Ukrainian Math. J., 2009; 61(10): pp. 1589-1609. doi:10.1007/s11253-010-0300-3

Romanyuk A.S., Romanyuk V.S. "Best bilinear approximations of functions from Nikol'skii-Besov classes", Ukrainsk. Mat. Zh., 2012; 64(5): pp. 685-697. English transl. in: Ukrainian Math. J., 2012; 64(5): pp. 781-796. doi:10.1007/s11253-012-0678-1

Romanyuk A.S., Romanyuk V.S. "Estimation of some approximating characteristics of the classes of periodic functions of one and many variables", Ukrainsk. Mat. Zh., 2019; 71(8): pp. 1102-1115. English transl. in: Ukrainian Math. J., 2020; 71(8): pp. 1257-1272. doi:10.1007/s11253-019-01711-x

Romanyuk A.S., Romanyuk V.S., Pozharska K.V., Hembars'ka S.B. "Characteristics of linear and nonlinear approximation of isotropic classes of periodic multivariate functions", Carpathian Math. Publ., 2023; 15(1): pp. 78-94. doi:10.15330/cmp.16.2.351-366

Romanyuk A.S., Yanchenko S.Ya. "Approximation of the classes of periodic functions of one and many variables from the Nikol'skii-Besov and Sobolev spaces", Ukrainsk. Mat. Zh., 2022; 74(6): pp. 844-855. doi:10.37863/umzh.v74i6.7141 English transl. in: Ukrainian Math. J., 2022; 74(6): pp. 967-980. doi:10.1007/s11253-022-02110-5

Shvai K.V. "The best m-term trigonometric approximations of the classes of periodic multivariate functions with bounded generalized derivative in the space $$$L_q$$$", Ukr. Mat. Visnyk, 2016; 13(3): pp. 361-375. English transl. in: J. Math. Sci., 2017; 222: pp. 750-761. doi:10.1007/s10958-017-3329-0

Shydlich A.L. "Order equalities for some functionals and their application to the estimation of the best n-term approximations and widths", Ukrainsk. Math. Zh., 2009; 61(10): pp. 1403-1423. English transl. in: Ukrainian Math. J., 2009; 61: pp. 1649-1671. doi:10.1007/s11253-010-0304-z

Stasyuk S.A. "Best m-term trigonometric approximation of periodic functions of several variables from Nikol'skii-Besov classes for small smoothness", J. Approx. Theory, 2014; 177: pp. 1-16. doi:10.1016/j.jat.2013.09.006

Stechkin S.B. "On absolute convergence of orthogonal series", Dokl. Akad. Nauk SSSR, 1955; 102(2): pp. 37-40.

Stepanyuk T.A. "Order estimates of best orthogonal trigonometric approximations of classes of infinitely differentiable functions", In: Trigonometric sums and their applications, Springer, Cham., 2020; pp. 273-287. doi:10.1007/978-3-030-37904-9_13

Temlyakov V.N. Approximation of periodic function, Nova Science Publishes, Inc., New York, 1993.

Temlyakov V.N. "Greedy algorithm and m-term trigonometric approximation", Constr. Approx., 1998; 14(4): pp. 569-587. doi:10.1007/s003659900090

Trigub R.M., Belinsky E.S. Fourier Analysis and Approximation of functions, Kluwer-Springer, 2004. doi:10.1007/978-1-4020-2876-2




DOI: https://doi.org/10.15421/242425

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 K.V. Pozharska, A.S. Romanyuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU