On Anisotropic $$$BV$$$-Spaces

P. Kogut (Oles Honchar Dnipro National University), https://orcid.org/0000-0003-1593-0510

Abstract


This paper is devoted to the study of a new class of functional spaces, the so-called anisotropic $$$BV$$$-spaces with a degenerate weight. We give a precise definition of such spaces and show that they can be viewed as a natural generalization of the standard space of functions with bounded variation.

Keywords


bounded variation; anisotropic space; BV space; generalized weighted gradient

MSC 2020


46E30; 46F99; 28A75

Full Text:

PDF

References


Acar R., Vogel C.R. "Analysis of bounded variation penalty methods for ill-posed problems", Inverse Probl., 1994; 10(6): pp. 1217-1229. doi:10.1088/0266-5611/10/6/003

Afraites L., Hadri A., Laghrib A., Nachaoui M. "A non-convex denoising model for impulse and Gaussian noise mixture removing using bi-level parameter identification", Inverse Probl. Imag., 2022; pp. 1-44. doi:10.3934/ipi.2022001

Alvarez L., Lions P.-L., Morel J.-M. "Image selective smoothing and edge detection by nonlinear diffusion", SIAM J. Numer. Anal., 1992; 29: pp. 845-866. doi:10.1137/0729052

Ambrosio L., Fusco N., Pallara D. Functions of Bounded Variation and Free Discontinuity Problems, Oxford Univ. Press, 2000. doi:10.1093/oso/9780198502456.001.0001

Attouch H., Buttazzo G., Michaille G. Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization, SIAM, 2006. doi:10.1137/1.9780898718782

Blomgren P., Chan T.F., Mulet P., Wong C. "Total variation image restoration: Numerical methods and extensions", Proc. IEEE Int. Conf. on Image Processing, 1997; 3: pp. 384-387. doi:10.1109/ICIP.1997.632128

Bogachev V.I. Measure Theory. Vol.1., Springer Science & Business Media, 2007. doi:10.1007/978-3-540-34514-5

Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2010. doi:10.1007/978-0-387-70914-7

Bredies K. A variational weak weighted derivative: Sobolev spaces and degenerate elliptic equations (preprint), Inst. Math. Sci. Comp., Univ. of Graz, 2010.

Brezis H. Analyse Fonctionnelle, Masson, 1992. (in French) doi:10.4236/ojcd.2015.52008

Caselles V., Chambolle A. "Anisotropic curvature-driven flow of convex sets", Nonlin. Analysis: Theor. Meth. Appl., 2006; 65(8): pp. 1547-1577. doi:10.1016/j.na.2005.10.029

Catté F., Lions P.L., Morel J-M., Coll T. "Image Selective Smoothing and Edge Detection by Nonlinear Diffusion", SIAM J. Numer. Analysis, 1992, 29(1): pp. 182-193. doi:10.1137/0729012

Chambolle A. "An algorithm for total variation minimization and applications", J. Math. Imag. Vis., 2004; 20(1-2): pp. 89-97. doi:10.1023/B:JMIV.0000011321.19549.88

Chambolle A., Lions P.L. "Image recovery via total variation minimization and related problems", Numer. Math., 1997; 76: pp. 167-188. doi:10.1007/s002110050258

D'Apice C., Kogut P.I., Kupenko O., Manzo R. "On Variational Problem with Nonstandard Growth Functional and Its Applications to Image Processing", J. Math. Imag. Vis., 2022; 65(3): pp. 472-491. doi:10.1007/s10851-022-01131-w

D'Apice C., Kogut P.I., Manzo R., Uvarov M. "Variational model with nonstandard growth conditions for restoration of satellite optical images using synthetic aperture radar", European J. Appl. Math., 2023; 34(1): pp. 77-105. doi:10.1017/S0956792522000031

D'Apice C., Kogut P., Manzo R., Parisi A. "Variational Model with Nonstandard Growth Condition in Image Restoration and Contrast Enhancement", Comm. Appl. Math. Comp., 2024. doi:10.1007/s42967-024-00382-1

D'Apice C., Kogut P., Manzo R., Pipino C. "Variational Approach to Simultaneous Fusion and Denoising of Color Images with Different Spacial Resolution", Comm. Math. Sci., 2024; 22(4): pp. 1099-1132. doi:10.4310/cms.2024.v22.n4.a10

D'Apice C., Kogut P., Manzo R. "On Generalized Active Contour Model in the Anisotropic BV Space and its Application to Satellite Remote Sensing of Agricultural Territory", Networks Heter. Media, 2025; 20(1): pp. 113-142. doi:10.3934/nhm.2025008

De Giorgi D., Ambrosio L. "New Functional in the Calculus of Variation and Free Discontinuous Problems", Mathematics, Physics, 1989. doi:10.1007/978-1-4757-6019-4-4

Evans L.C. Partial Differential Eequations, part of: Graduate Studies in Mathematics, Vol.19, AMS, 2010.

Evans L.C., Gariepy R.F. Measure Theory and Fine Properties of Functions, CRC Press, 2015. doi:10.1201/b18333

Guidotti P. "Anisotropic diffusions of image processing from Perona-Malik on", Adv. Stud. Pure Math., 2015; 67: pp. 131-156. doi:10.1063/1/4887563

Giusti E. Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, 1984. doi:10.1007/978-1-4684-9486-0

Hiremas S., Rani A.S. "Image filtering using anisotropic diffusion for brain tumor detection", Appl. Parallel Data Process. Biomed. Imag., 2024; pp. 244-260. doi:10.4018/979-8-3693-2426-4.ch012

Ivanchuk N., Kogut P. "On Anisotropic Variational Model for SAR Image Despeckling", J. Optimiz. Diff. Eq. Appl., 2025; 33 (1): pp. 86-109. doi:10.15421/142505

Muckenhoupt B. "Weighted norm inequalities for the Hardy maximal function", Trans. Amer. Math. Soc., 1972; 165: pp. 207-226. doi:10.2307/1995882

Mumford D., Shah J. "Optimal approximation by piecewise smooth functions and associated variational problems", Commun. Pure. Appl. Math., 1989; 42(5): pp. 577-685. doi:10.1002/cpa.3160420503

Paskas M.P. "Image denoising based on fractional anisotropic diffusion and spatial central schemes", Signal Process., 2025; 230. doi:10.1016/j.sigpro.2024.109869

Pragliola M., Calatroni L., Lanza A., Sgallari F. "On and beyond Total Variation regularisation in imaging: the role of space variance", SIAM Review 2023; 65(1): pp. 601-685. doi:10.1137/21M1410683

Radhi E.A., Mohammed M. "Anisotropic Diffusion Method for Speckle Noise Reduction in Breast Ultrasound Images", Int. J. Intel. Eng. Sys., 2024; 17(2): pp. 621-631. doi:10.22266/ijies2024.0430.50

Rotem L. "The Anisotropic Total Variation and Surface Area Measures", in: Eldan, R., Klartag, B., Litvak, A., Milman, E. (eds). Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics, 2023; 2327: pp. 297-312. doi:10.1007/978-3-031-26300-2-11

Rudin W. Analyse réele at complexe, Masson, 1975. (in French)

Rudin L.I., Osher S., Fatemi E. "Nonlinear total variation based noise removal algorithms", Physica, 1992; 60(D): pp. 259-268. doi:10.1016/0167-2789(92)90242-F

Samson C., Blanc-Féraud L., Aubert G., Zerubia J. "Multiphase evolution and variational image classification", Tech. Report, INRIA Sophia Antipolis, 1999. doi:inria-00073010

Temam R. Mathematical Problems in Plasticity, Gauthier-Villars, 1985. doi:10.1016/S0045-7825(98)00210-2

Turesson B.O. Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer, 2000. doi:10.1007/BFb0103908

Wei J, Xiaofeng L., Hao Zh. "Directional Laplacian-based fractional anisotropic diffusion for noise removal in image processing", Nonlin. Dynam., 2025. doi:10.1007/s11071-025-10870-5

Weickert J. Anisotropic Diffusion in Image Processing, Univ. of Copenhagen, B.G. Teubner Stuttgart, 1996. doi:10.1007/978-1-4471-2353-8-4




DOI: https://doi.org/10.15421/242503

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 P. Kogut

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU