Dynamics of an Infinite-Dimensional Symmetric Logistic Mapping

Z. Novosad (Lviv University of Trade and Economics), https://orcid.org/0000-0003-2283-1879
V.M. Pylypiv (Vasyl Stefanyk Precarpathian National University), https://orcid.org/0000-0003-0579-1211
S. Sharyn (Vasyl Stefanyk Precarpathian National University), https://orcid.org/0000-0003-2547-1442
A.V. Zagorodnyuk (Vasyl Stefanyk Precarpathian National University), https://orcid.org/0000-0002-5554-4342

Abstract


There are many generalizations of the famous logistic mapping. In the paper, we considered discrete dynamical systems of an infinite number of variables, generated by a symmetric polynomial map that generalizes the logistic mapping for the ring of multisets. Using homomorphisms of the ring of multisets (multinumbers), it is possible to represent the infinite-dimensional symmetric logistic map as a sequence of classical logistic mappings.  We observed that the converse statement is also true: for any finite sequence of classical logistic mappings, there exists a logistic map on the ring of multinumbers that agrees with the sequence. We found some nontrivial fixed points of the logistic map on the ring of multinumbers and proved that under some conditions, the initial point of the logistic dynamical system on the ring of multinumbers can be uniquely discovered by any $$$n$$$-th iteration. This fact allows us to propose an application of the dynamical system to the construction of collision-free hash functions of data that is important in cryptography. Also, we observed that the logistic map on the ring of multinumbers can be represented as a transformation on a set of rational functions.

Keywords


logistic mapping; symmetric polynomials; supersymmetric polynomials; ring of multisets; dynamical system; hash function

MSC 2020


46B70; 47A16; 22A05

Full Text:

PDF

References


Akhmet M., Akhmetova Z., Fen M. "Chaos in Economic Models with Exogenous Shocks", J. Econ. Behav. Org., 2014; 106(C): pp. 95-108. doi:10.1016/j.jebo.2014.06.008

Askar S.S., Karawia A.A., Al-Khedhairi A., Al-Ammar F.S. "An Algorithm of Image Encryption Using Logistic and Two-Dimensional Chaotic Economic Maps", Entropy, 2019; 21: 44. doi:10.3390/e21010044

Ausloos M., Dirickx M. The Logistic Map and the Route to Chaos. From The Beginnings to Modern Applications, Springer, 2006.

Bandura A., Kravtsiv V., Vasylyshyn T. "Algebraic basis of the algebra of all symmetric continuous polynomials on the cartesian product of $$$\ell_p$$$-spaces", Axioms, 2022; 11: 41. doi:10.3390/axioms11020041

Bassols-Cornudella B., Lamb J.S.W. "Noise-induced chaos: a conditioned random dynamics perspective", Chaos, 2023; 33(12): 121102. doi:10.1063/5.0175466

Bucolo M., Buscarino A., Fortuna L., Gagliano S. "Multidimensional discrete chaotic maps", Front. Phys., 2022; 10: 862376. doi:10.3389/fphy.2022.862376

Burtnyak I.V., Chopyuk Yu.Yu., Vasylyshyn S.I., Vasylyshyn T.V. "Algebras of weakly symmetric functions on spaces of Lebesgue measurable functions", Carpathian Math. Publ., 2023; 15: pp. 411-419. doi:10.15330/cmp.15.2.411-419

Chernega I.V. "A semiring in the spectrum of the algebra of symmetric analytic functions in the space $$$\ell_1$$$", J. Math. Sci., 2016; 212: pp. 38-45. doi:10.1007/s10958-015-2647-3

Chernega I., Zagorodnyuk A. "Supersymmetric Polynomials and a Ring of Multisets of a Banach Algebra", Axioms, 2022; 11: 511. doi:10.3390/axioms11100511

Chopyuk Y., Vasylyshyn T., Zagorodnyuk A. "Rings of Multisets and Integer Multinumbers", Mathematics, 2022; 10(5): 778. doi:10.3390/math10050778

Chen S., Feng S., Fu W., Zhang Y. "Logistic map: stability and entrance to chaos", J. Phys.: Conf. Ser., 2021; 2014: 012009. doi:10.1088/1742-6596/2014/1/012009

Falcó J., Garcı́a D., Jung M., Maestre M. "Group-invariant separating polynomials on a Banach space", Publicacions Matematiques, 2022; 66: pp. 207-233. doi:10.5565/PUBLMAT6612209

Gatica Araus I. "$$$\sigma$$$-set theory: introduction to the concepts of $$$\sigma$$$-antielement, $$$\sigma$$$-antiset and integer space", 2010, arXiv:0906.3120v8

Gatica I., Bustamante A. "$$$\sigma$$$-sets and $$$\sigma$$$-antisets", 2025, arXiv:2501.00047v2

González M., Gonzalo R., Jaramillo J.A. "Symmetric polynomials on rearrangement-invariant function spaces", J. Lond. Math. Soc., 1999; 59: pp. 681-697. doi:10.1112/S0024610799007164

Halushchak I., Novosad Z., Tsizhma Y., Zagorodnyuk A. "Logistic Map on the Ring of Multisets and Its Application in Economic Models", Mathematics and Statistics, 2020; 8(4): pp. 424-429. doi:10.13189/ms.2020.080408

Jawad F., Zagorodnyuk A. "Supersymmetric Polynomials on the Space of Absolutely Convergent Series", Symmetry, 2019; 11(9): 1111. doi:10.3390/sym11091111

Kimak V., Kravtsiv V., Zagorodnyuk A. "Cryptography with Integer Multinumbers", in: Proc. 2024 5th Int. Conf. Comm., Inf. El. En. Sys. (CIEES), Veliko Tarnovo, Bulgaria, 20-22.11.2024.

Kocarev L., Jakimoski G. "Logistic map as a block encryption algorithm", Phys. Lett. A, 2001; 289(4-5): pp. 199-206. doi:10.1016/S0375-9601(01)00609-0

Kravtsiv V. "Block-Supersymmetric Polynomials on Spaces of Absolutely Convergent Series", Symmetry, 2024; 16: 179. doi:10.3390/sym16020179

Li C., Xie T., Liu Q., Cheng G. "Cryptanalyzing image encryption using chaotic logistic map", Nonlin. Dyn., 2014; 78: pp. 1545-1551. doi:10.1007/s11071-014-1533-8

Mansouri A., Wang X.Y. "A novel one-dimensional sine powered chaotic map and its application in a new image encryption scheme", Inf. Sci., 2020; 520: pp. 46-62. doi:10.1016/j.ins.2020.02.008

May R.M. "Simple mathematical models with very complicated dynamics", Nature, 1976; 261(5560): pp. 459-467. doi:10.1038/261459a0

Navickas Z., Smidtaite R., Smidtaite R., Vainoras A., Ragulskis M. "The Logistic Map of Matrices", Discr. Cont. Dyn. Sys. B, 2011; 16: pp. 927-944. doi:10.3934/dcdsb.2011.16.927

Nemirovskii A., Semenov S. "On polynomial approximation of functions on Hilbert space", Mat. USSR-Sb., 1973; 21: pp. 255-277. doi:10.1070/SM1973v021n02ABEH002016

Pellicer-Lostao C., López-Ruiz R. "A chaotic gas-like model for trading markets", J. Comput. Sci., 2010; 1: pp. 24-32. doi:10.1016/j.jocs.2010.03.005

Rak R., Rak E. "Route to chaos in generalized logistic map", Acta Phys. Polonica, 2015; 127: pp. 113-117. doi:10.12693/APhysPolA.127.A-113

Rhouma R., Belghith S. "A multidimensional map for a chaotic cryptosystem", in: Proc. 14th European Sig. Process. Conf. (EUSIPCO 2006), Florence, Italy, 04-08.09.2006.

Vasylyshyn T. "Algebras of Symmetric and Block-Symmetric Functions on Spaces of Lebesgue Measurable Functions", Carpathian Math. Publ., 2024; 16: pp. 174-189. doi:10.15330/cmp.16.1.174-189

Vasylyshyn T. "Symmetric analytic functions on the Cartesian power of the complex Banach space of Lebesgue measurable essentially bounded functions on $$$[0,1]$$$", J. Math. Anal. Appl., 2022; 509: 125977. doi:10.1016/j.jmaa.2021.125977

Zagorodnyuk A., Baziv N., Chopyuk Y., Vasylyshyn T., Burtnyak I., Kravtsiv V. "Symmetric and Supersymmetric Polynomials and Their Applications in the Blockchain Technology and Neural Networks", in: Proc. 2023 IEEE World Conf. Appl. Intel. Comp. (AIC), Sonbhadra, India, 29-30.07.2023, pp. 508-513. doi:10.1109/AIC57670.2023.10263936

Zoukalne K., Hassane A.M., Khayal M.Y., Woafo P. "Chaos in new polynomial discrete logistic maps with fractional derivative and applications for text encryption", Appl. Math. Inf. Sci., 2023; 17: pp. 807-816. doi:10.18576/amis/170507




DOI: https://doi.org/10.15421/242504

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Z. Novosad, V.M. Pylypiv, S. Sharyn, A.V. Zagorodnyuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU