Dynamics of an Infinite-Dimensional Symmetric Logistic Mapping
Abstract
Keywords
MSC 2020
Full Text:
PDFReferences
Akhmet M., Akhmetova Z., Fen M. "Chaos in Economic Models with Exogenous Shocks", J. Econ. Behav. Org., 2014; 106(C): pp. 95-108. doi:10.1016/j.jebo.2014.06.008
Askar S.S., Karawia A.A., Al-Khedhairi A., Al-Ammar F.S. "An Algorithm of Image Encryption Using Logistic and Two-Dimensional Chaotic Economic Maps", Entropy, 2019; 21: 44. doi:10.3390/e21010044
Ausloos M., Dirickx M. The Logistic Map and the Route to Chaos. From The Beginnings to Modern Applications, Springer, 2006.
Bandura A., Kravtsiv V., Vasylyshyn T. "Algebraic basis of the algebra of all symmetric continuous polynomials on the cartesian product of $$$\ell_p$$$-spaces", Axioms, 2022; 11: 41. doi:10.3390/axioms11020041
Bassols-Cornudella B., Lamb J.S.W. "Noise-induced chaos: a conditioned random dynamics perspective", Chaos, 2023; 33(12): 121102. doi:10.1063/5.0175466
Bucolo M., Buscarino A., Fortuna L., Gagliano S. "Multidimensional discrete chaotic maps", Front. Phys., 2022; 10: 862376. doi:10.3389/fphy.2022.862376
Burtnyak I.V., Chopyuk Yu.Yu., Vasylyshyn S.I., Vasylyshyn T.V. "Algebras of weakly symmetric functions on spaces of Lebesgue measurable functions", Carpathian Math. Publ., 2023; 15: pp. 411-419. doi:10.15330/cmp.15.2.411-419
Chernega I.V. "A semiring in the spectrum of the algebra of symmetric analytic functions in the space $$$\ell_1$$$", J. Math. Sci., 2016; 212: pp. 38-45. doi:10.1007/s10958-015-2647-3
Chernega I., Zagorodnyuk A. "Supersymmetric Polynomials and a Ring of Multisets of a Banach Algebra", Axioms, 2022; 11: 511. doi:10.3390/axioms11100511
Chopyuk Y., Vasylyshyn T., Zagorodnyuk A. "Rings of Multisets and Integer Multinumbers", Mathematics, 2022; 10(5): 778. doi:10.3390/math10050778
Chen S., Feng S., Fu W., Zhang Y. "Logistic map: stability and entrance to chaos", J. Phys.: Conf. Ser., 2021; 2014: 012009. doi:10.1088/1742-6596/2014/1/012009
Falcó J., Garcı́a D., Jung M., Maestre M. "Group-invariant separating polynomials on a Banach space", Publicacions Matematiques, 2022; 66: pp. 207-233. doi:10.5565/PUBLMAT6612209
Gatica Araus I. "$$$\sigma$$$-set theory: introduction to the concepts of $$$\sigma$$$-antielement, $$$\sigma$$$-antiset and integer space", 2010, arXiv:0906.3120v8
Gatica I., Bustamante A. "$$$\sigma$$$-sets and $$$\sigma$$$-antisets", 2025, arXiv:2501.00047v2
González M., Gonzalo R., Jaramillo J.A. "Symmetric polynomials on rearrangement-invariant function spaces", J. Lond. Math. Soc., 1999; 59: pp. 681-697. doi:10.1112/S0024610799007164
Halushchak I., Novosad Z., Tsizhma Y., Zagorodnyuk A. "Logistic Map on the Ring of Multisets and Its Application in Economic Models", Mathematics and Statistics, 2020; 8(4): pp. 424-429. doi:10.13189/ms.2020.080408
Jawad F., Zagorodnyuk A. "Supersymmetric Polynomials on the Space of Absolutely Convergent Series", Symmetry, 2019; 11(9): 1111. doi:10.3390/sym11091111
Kimak V., Kravtsiv V., Zagorodnyuk A. "Cryptography with Integer Multinumbers", in: Proc. 2024 5th Int. Conf. Comm., Inf. El. En. Sys. (CIEES), Veliko Tarnovo, Bulgaria, 20-22.11.2024.
Kocarev L., Jakimoski G. "Logistic map as a block encryption algorithm", Phys. Lett. A, 2001; 289(4-5): pp. 199-206. doi:10.1016/S0375-9601(01)00609-0
Kravtsiv V. "Block-Supersymmetric Polynomials on Spaces of Absolutely Convergent Series", Symmetry, 2024; 16: 179. doi:10.3390/sym16020179
Li C., Xie T., Liu Q., Cheng G. "Cryptanalyzing image encryption using chaotic logistic map", Nonlin. Dyn., 2014; 78: pp. 1545-1551. doi:10.1007/s11071-014-1533-8
Mansouri A., Wang X.Y. "A novel one-dimensional sine powered chaotic map and its application in a new image encryption scheme", Inf. Sci., 2020; 520: pp. 46-62. doi:10.1016/j.ins.2020.02.008
May R.M. "Simple mathematical models with very complicated dynamics", Nature, 1976; 261(5560): pp. 459-467. doi:10.1038/261459a0
Navickas Z., Smidtaite R., Smidtaite R., Vainoras A., Ragulskis M. "The Logistic Map of Matrices", Discr. Cont. Dyn. Sys. B, 2011; 16: pp. 927-944. doi:10.3934/dcdsb.2011.16.927
Nemirovskii A., Semenov S. "On polynomial approximation of functions on Hilbert space", Mat. USSR-Sb., 1973; 21: pp. 255-277. doi:10.1070/SM1973v021n02ABEH002016
Pellicer-Lostao C., López-Ruiz R. "A chaotic gas-like model for trading markets", J. Comput. Sci., 2010; 1: pp. 24-32. doi:10.1016/j.jocs.2010.03.005
Rak R., Rak E. "Route to chaos in generalized logistic map", Acta Phys. Polonica, 2015; 127: pp. 113-117. doi:10.12693/APhysPolA.127.A-113
Rhouma R., Belghith S. "A multidimensional map for a chaotic cryptosystem", in: Proc. 14th European Sig. Process. Conf. (EUSIPCO 2006), Florence, Italy, 04-08.09.2006.
Vasylyshyn T. "Algebras of Symmetric and Block-Symmetric Functions on Spaces of Lebesgue Measurable Functions", Carpathian Math. Publ., 2024; 16: pp. 174-189. doi:10.15330/cmp.16.1.174-189
Vasylyshyn T. "Symmetric analytic functions on the Cartesian power of the complex Banach space of Lebesgue measurable essentially bounded functions on $$$[0,1]$$$", J. Math. Anal. Appl., 2022; 509: 125977. doi:10.1016/j.jmaa.2021.125977
Zagorodnyuk A., Baziv N., Chopyuk Y., Vasylyshyn T., Burtnyak I., Kravtsiv V. "Symmetric and Supersymmetric Polynomials and Their Applications in the Blockchain Technology and Neural Networks", in: Proc. 2023 IEEE World Conf. Appl. Intel. Comp. (AIC), Sonbhadra, India, 29-30.07.2023, pp. 508-513. doi:10.1109/AIC57670.2023.10263936
Zoukalne K., Hassane A.M., Khayal M.Y., Woafo P. "Chaos in new polynomial discrete logistic maps with fractional derivative and applications for text encryption", Appl. Math. Inf. Sci., 2023; 17: pp. 807-816. doi:10.18576/amis/170507
DOI: https://doi.org/10.15421/242504
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Z. Novosad, V.M. Pylypiv, S. Sharyn, A.V. Zagorodnyuk

This work is licensed under a Creative Commons Attribution 4.0 International License.