Boyanov-Naydenov problem and Kolmogorov type inequalities for positive (negative) parts of functions
Abstract
We prove that Boyanov-Naidenov problem $$$\|x^{(k)}_{\pm}\|_{q,\, \mu} \to \sup$$$ on classes of functions $$$\Omega^r_p(A_0, A_r):=\{x\in L^r_{\infty}: \|x^{(r)}\|_{\infty}\le A_r, L(x)_p\le A_0 \}$$$, where $$$k= 0,1,...,r-1$$$, $$$q \ge 1$$$ for $$$k\ge 1$$$, $$$q \ge p$$$ for $$$k=0$$$, is equivalent to the problem of the sharp constant $$$C = C(\lambda)$$$, $$$\lambda > 0$$$, in the Kolmogorov type inequality
$$\|x^{(k)}_{\pm}\|_{q,\, \mu} \leq C L(x)_{p}^{\alpha} \left\|x^{\left( r\right) }\right\|_\infty^{1-\alpha}, \;\;\;x\in \Omega^{\,r}_{p, \lambda} \qquad \qquad \qquad \qquad (1)$$ where $$$\|x_{\pm}\|_{p, \mu}:=\sup \{ \|x_{\pm}\|_{L_p[a, b]}: a, b\in {\rm \bf R}, \mu \left( {\rm supp}_{[a, b]} x_{\pm} \right) \le \mu \}$$$, $$$\Omega^{\,r}_{p, \lambda}:= \{x\in L^r_{\infty}: L(x)_p = L(\varphi_{\lambda, r})_p \cdot \|x^{(r)}\|_{\infty} \}$$$, $$$\alpha=\frac{r-k+1/q}{r+1/p}$$$, $$$\varphi_{\lambda, r}$$$ is the contraction of the ideal Euler spline of order $$$r$$$,
$$L(x)_p:=\sup \left\{ \|x\|_{L_p[a,\, b]}: \; a, b \in {\rm \bf R},\; |x(t)|>0,\;t\in (a, b) \right\}$$
In particular, we obtain the sharp inequality of the form (1).
Similar results were obtained on asymmetric classes of functions and on the spaces of trigonometric polynomials and splines.
Keywords
MSC 2020
Full Text:
PDFReferences
Babenko V.F. "Researches of Dnipropetrovsk mathematicians on inequalities for derivatives of periodic functions and their applications", Ukrainian Math. J., 2000, 52(1): pp. 9-29. doi:10.1007/BF02514133
Kwong M.K., Zettl A. "Norm inequalities for derivatives and differences", Lecture Notes in Math., Springer-Verlag, 1993.
Babenko V.F., Kofanov V.A., Pichugov S.A. "Comparison of exact constants in inequalities for derivatives of functions defined on the real axis and a circle", Ukrainian Math. J., 2003; 55(5): pp. 699-711. doi:10.1023/B:UKMA.0000010250.39603.d4
Bojanov B., Naidenov N. "An extension of the Landau-Kolmogorov inequality. Solution of a problem of Erdös", J. d'Analyse Mathematique, 1999; 78: pp. 263-280. doi:10.1007/BF02791137
Erdös P. "Open problems", Open Problems in Approximation Theory (B. Bojanov, ed.), SCT Publishing, Singapur, 1994; pp. 238-242.
Kofanov V.A. "Inequalities for Nonperiodic Splines on the Real Axis and Their Derivatives", Ukrainian Math. J., 2014; 66(2): pp. 216-225. doi:10.1007/s11253-014-0926-7
Pinkus A., Shisha O. "Variations on the Chebyshev and $$$L^q$$$-Theories of Best Approximation", Journal of Approx. Theory, 1982; 35(2): pp. 148-168. doi:10.1016/0021-9045(82)90033-8
Kofanov V.A. "On some extremal problems of different metrics for differentiable functions on the axis", Ukrainian Math. J., 2009; 61(6): pp. 908-922. doi:10.1007/s11253-009-0254-5
Kofanov V.A. "Some extremal problems in various metrics and sharp inequalities of Nagy-Kolmogorov type", East. J. Approx., 2010; 16(4): p. 313-334.
Kofanov V.A. "Sharp upper bounds of norms of functions and their derivatives on classes of functions with given comparison function", Ukrainian Math. J., 2011; 63(7): pp. 969-984. doi:10.1007/s11253-011-0567-z
Kofanov V.A. "Bojanov–Naidenov problem for functions with asymmetric restrictions for the higher derivative", Ukrainian Math. J., 2019; 71(3): pp. 419-434. doi:10.1007/s11253-019-01655-2
Kofanov V.A. "Inequalities for derivatives of functions on an axis with nonsymmetrically bounded higher derivatives", Ukrainian Math. J., 2012; 64(5): pp. 721-736. doi:10.1007/s11253-012-0674-5
Kofanov V.A. "Bojanov-Naidenov problem for the differentiable functions and Erdös problem for polynomials and splines", Ukrainian Math. J., 2023; 75(2): pp. 206-224. doi:10.1007/s11253-023-02194-7
Kofanov V.A. "Relationship between the Boyanov-Naydenov problem and the Kolmogorov-type inequalities", Ukrainian Math. J., 2024; 76(3): pp. 443-452. doi:10.1007/s11253-024-02330-x
Kofanov V.A. "On the relationship between sharp Kolmogorov-type inequalities and sharp Kolmogorov-Remez-type inequalities", Ukrainian Math. J., 2021; 73(4): pp. 592-600. doi:10.1007/s11253-021-01945-8
Nursultanov E., Tikhonov S. "A sharp Remez inequality for trigonometric polynomials", Constr. Approx., 2013; 38: pp. 101-132. doi:10.1007/s00365-012-9172-0
Tikhonov S., Yuditski P. "Sharp Remez Inequality", Const. Approx., 2020; 52: pp. 233-246. doi:10.1007/s00365-019-09473-2
Kofanov V.A. "Sharp Remez-type inequalities for differentiable periodic functions, polynomials and splines", Ukrainian Math. J., 2016; 68(2): pp. 227-240. doi:10.1007/s11253-016-1222-5
Kofanov V.A. "Sharp Remez-Type inequalities of different metrics for differentiable periodic functions, polynomials, and splines", Ukrainian Math. J., 2017; 69(2): pp. 205-223. doi:10.1007/s11253-017-1357-z
Gaidabura A.E., Kofanov V.A. "Sharp Remez-type inequalities of various metrics in the classes of functions with given comparison function", Ukrainian Math. J., 2017; 69(11): pp. 1710-1726. doi:10.1007/s11253-018-1465-4
Kofanov V.A. "Sharp Kolmogorov-Remez-type inequalities for periodic functions of low smoothness", Ukrainian Math. J., 2020; 72(4): pp. 555-567. doi:10.1007/s11253-020-01800-2
Kofanov V.A., Popovich I.V. "Sharp Remez-type inequalities of various metrics with asymmetric restrictions imposed on the functions", Ukrainian Math. J., 2020; 72(7): pp. 1068-1079. doi:10.1007/s11253-020-01844-4
Kofanov V.A., Olexandrova T.V. "A sharp Remez type inequalities which estimate $$$L_q$$$-norm of a function with the help of its $$$L_p$$$-norm", Ukrainian Math. J., 2022; 74(5): pp. 635-649. doi:10.1007/s11253-022-02097-z
Kofanov V.A. "Bojanov–Naidenov Problem for Differentiable Functions on the Real Line and the Inequalities of Various Metric", Ukrainian Math. J., 2019; 71(6): pp. 786-800. doi:10.1007/s11253-019-01687-8
Asadova E.V., Kofanov V.A. "The Bojanov-Naidenov problem for trigonometric polynomials and periodic splines", Res. Math., 2019; 27: pp. 3-13. doi:10.15421/241901
Danchenko K.A., Kofanov V.A. "Extremal problems for non-periodic splines on real domain and their derivatives", Res. Math., 2019; 27: pp. 28-38. (in Ukrainian) doi:10.15421/241903
Kofanov V.A. "On sharp Bernstein-type inequalities for splines", Ukrainian Math. J., 2006; 58(10): pp. 1357-1367. doi:10.1007/s11253-006-0152-z
Kofanov V.A. "Inequalities for derivative functions in spaces $$$L_p$$$", Ukrainian Math. J., 2008; 60(10): pp. 1338-1349. doi:10.1007/s11253-009-0152-x
Kofanov V.A. "Inequalities of different metrics for differentiable periodic functions", Ukrainian Math. J., 2015; 67(2): pp. 202-212. doi:10.1007/s11253-015-1076-2
Korneichuk N.P., Babenko V.F., Kofanov V.A., Pichugov S.A. Inequalities for derivatives and their applications, Naukova dumka, 2003.
Kameneva V.V., Kofanov V.A. "Bojanov-Naidenov problem for positive (negative) parts of differentiable function on the real domain", Res. Math., 2018; 26: pp. 25-30.
DOI: https://doi.org/10.15421/242516
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 V.A. Kofanov

This work is licensed under a Creative Commons Attribution 4.0 International License.











