Boyanov-Naydenov problem and Kolmogorov type inequalities for positive (negative) parts of functions

V.A. Kofanov (Oles Honchar Dnipro National University), https://orcid.org/0000-0003-0392-2257

Abstract


We prove that Boyanov-Naidenov problem $$$\|x^{(k)}_{\pm}\|_{q,\, \mu} \to \sup$$$ on classes of functions $$$\Omega^r_p(A_0, A_r):=\{x\in L^r_{\infty}: \|x^{(r)}\|_{\infty}\le A_r, L(x)_p\le A_0 \}$$$, where $$$k= 0,1,...,r-1$$$, $$$q \ge 1$$$ for $$$k\ge 1$$$, $$$q \ge p$$$ for $$$k=0$$$, is equivalent to the problem of the sharp constant $$$C = C(\lambda)$$$, $$$\lambda > 0$$$, in the Kolmogorov type inequality
$$\|x^{(k)}_{\pm}\|_{q,\, \mu} \leq C L(x)_{p}^{\alpha} \left\|x^{\left( r\right) }\right\|_\infty^{1-\alpha}, \;\;\;x\in \Omega^{\,r}_{p, \lambda} \qquad \qquad \qquad \qquad (1)$$ where $$$\|x_{\pm}\|_{p, \mu}:=\sup \{ \|x_{\pm}\|_{L_p[a, b]}: a, b\in {\rm \bf R}, \mu \left( {\rm supp}_{[a, b]} x_{\pm} \right) \le \mu \}$$$, $$$\Omega^{\,r}_{p, \lambda}:= \{x\in L^r_{\infty}: L(x)_p = L(\varphi_{\lambda, r})_p \cdot \|x^{(r)}\|_{\infty} \}$$$, $$$\alpha=\frac{r-k+1/q}{r+1/p}$$$, $$$\varphi_{\lambda, r}$$$ is the contraction of the ideal Euler spline of order $$$r$$$,
$$L(x)_p:=\sup \left\{ \|x\|_{L_p[a,\, b]}: \; a, b \in {\rm \bf R},\; |x(t)|>0,\;t\in (a, b) \right\}$$
In particular, we obtain the sharp inequality of the form (1).
Similar results were obtained on asymmetric classes of functions and on the spaces of trigonometric polynomials and splines.


Keywords


Boyanov-Naidenov problem; Kolmogorov type sharp inequality; local norm; trigonometric polynomials; splines; asymmetric classes

MSC 2020


Pri 41A17, Sec 41A44, 42A05, 41A15

Full Text:

PDF

References


Babenko V.F. "Researches of Dnipropetrovsk mathematicians on inequalities for derivatives of periodic functions and their applications", Ukrainian Math. J., 2000, 52(1): pp. 9-29. doi:10.1007/BF02514133

Kwong M.K., Zettl A. "Norm inequalities for derivatives and differences", Lecture Notes in Math., Springer-Verlag, 1993.

Babenko V.F., Kofanov V.A., Pichugov S.A. "Comparison of exact constants in inequalities for derivatives of functions defined on the real axis and a circle", Ukrainian Math. J., 2003; 55(5): pp. 699-711. doi:10.1023/B:UKMA.0000010250.39603.d4

Bojanov B., Naidenov N. "An extension of the Landau-Kolmogorov inequality. Solution of a problem of Erdös", J. d'Analyse Mathematique, 1999; 78: pp. 263-280. doi:10.1007/BF02791137

Erdös P. "Open problems", Open Problems in Approximation Theory (B. Bojanov, ed.), SCT Publishing, Singapur, 1994; pp. 238-242.

Kofanov V.A. "Inequalities for Nonperiodic Splines on the Real Axis and Their Derivatives", Ukrainian Math. J., 2014; 66(2): pp. 216-225. doi:10.1007/s11253-014-0926-7

Pinkus A., Shisha O. "Variations on the Chebyshev and $$$L^q$$$-Theories of Best Approximation", Journal of Approx. Theory, 1982; 35(2): pp. 148-168. doi:10.1016/0021-9045(82)90033-8

Kofanov V.A. "On some extremal problems of different metrics for differentiable functions on the axis", Ukrainian Math. J., 2009; 61(6): pp. 908-922. doi:10.1007/s11253-009-0254-5

Kofanov V.A. "Some extremal problems in various metrics and sharp inequalities of Nagy-Kolmogorov type", East. J. Approx., 2010; 16(4): p. 313-334.

Kofanov V.A. "Sharp upper bounds of norms of functions and their derivatives on classes of functions with given comparison function", Ukrainian Math. J., 2011; 63(7): pp. 969-984. doi:10.1007/s11253-011-0567-z

Kofanov V.A. "Bojanov–Naidenov problem for functions with asymmetric restrictions for the higher derivative", Ukrainian Math. J., 2019; 71(3): pp. 419-434. doi:10.1007/s11253-019-01655-2

Kofanov V.A. "Inequalities for derivatives of functions on an axis with nonsymmetrically bounded higher derivatives", Ukrainian Math. J., 2012; 64(5): pp. 721-736. doi:10.1007/s11253-012-0674-5

Kofanov V.A. "Bojanov-Naidenov problem for the differentiable functions and Erdös problem for polynomials and splines", Ukrainian Math. J., 2023; 75(2): pp. 206-224. doi:10.1007/s11253-023-02194-7

Kofanov V.A. "Relationship between the Boyanov-Naydenov problem and the Kolmogorov-type inequalities", Ukrainian Math. J., 2024; 76(3): pp. 443-452. doi:10.1007/s11253-024-02330-x

Kofanov V.A. "On the relationship between sharp Kolmogorov-type inequalities and sharp Kolmogorov-Remez-type inequalities", Ukrainian Math. J., 2021; 73(4): pp. 592-600. doi:10.1007/s11253-021-01945-8

Nursultanov E., Tikhonov S. "A sharp Remez inequality for trigonometric polynomials", Constr. Approx., 2013; 38: pp. 101-132. doi:10.1007/s00365-012-9172-0

Tikhonov S., Yuditski P. "Sharp Remez Inequality", Const. Approx., 2020; 52: pp. 233-246. doi:10.1007/s00365-019-09473-2

Kofanov V.A. "Sharp Remez-type inequalities for differentiable periodic functions, polynomials and splines", Ukrainian Math. J., 2016; 68(2): pp. 227-240. doi:10.1007/s11253-016-1222-5

Kofanov V.A. "Sharp Remez-Type inequalities of different metrics for differentiable periodic functions, polynomials, and splines", Ukrainian Math. J., 2017; 69(2): pp. 205-223. doi:10.1007/s11253-017-1357-z

Gaidabura A.E., Kofanov V.A. "Sharp Remez-type inequalities of various metrics in the classes of functions with given comparison function", Ukrainian Math. J., 2017; 69(11): pp. 1710-1726. doi:10.1007/s11253-018-1465-4

Kofanov V.A. "Sharp Kolmogorov-Remez-type inequalities for periodic functions of low smoothness", Ukrainian Math. J., 2020; 72(4): pp. 555-567. doi:10.1007/s11253-020-01800-2

Kofanov V.A., Popovich I.V. "Sharp Remez-type inequalities of various metrics with asymmetric restrictions imposed on the functions", Ukrainian Math. J., 2020; 72(7): pp. 1068-1079. doi:10.1007/s11253-020-01844-4

Kofanov V.A., Olexandrova T.V. "A sharp Remez type inequalities which estimate $$$L_q$$$-norm of a function with the help of its $$$L_p$$$-norm", Ukrainian Math. J., 2022; 74(5): pp. 635-649. doi:10.1007/s11253-022-02097-z

Kofanov V.A. "Bojanov–Naidenov Problem for Differentiable Functions on the Real Line and the Inequalities of Various Metric", Ukrainian Math. J., 2019; 71(6): pp. 786-800. doi:10.1007/s11253-019-01687-8

Asadova E.V., Kofanov V.A. "The Bojanov-Naidenov problem for trigonometric polynomials and periodic splines", Res. Math., 2019; 27: pp. 3-13. doi:10.15421/241901

Danchenko K.A., Kofanov V.A. "Extremal problems for non-periodic splines on real domain and their derivatives", Res. Math., 2019; 27: pp. 28-38. (in Ukrainian) doi:10.15421/241903

Kofanov V.A. "On sharp Bernstein-type inequalities for splines", Ukrainian Math. J., 2006; 58(10): pp. 1357-1367. doi:10.1007/s11253-006-0152-z

Kofanov V.A. "Inequalities for derivative functions in spaces $$$L_p$$$", Ukrainian Math. J., 2008; 60(10): pp. 1338-1349. doi:10.1007/s11253-009-0152-x

Kofanov V.A. "Inequalities of different metrics for differentiable periodic functions", Ukrainian Math. J., 2015; 67(2): pp. 202-212. doi:10.1007/s11253-015-1076-2


Korneichuk N.P., Babenko V.F., Kofanov V.A., Pichugov S.A. Inequalities for derivatives and their applications, Naukova dumka, 2003.

Kameneva V.V., Kofanov V.A. "Bojanov-Naidenov problem for positive (negative) parts of differentiable function on the real domain", Res. Math., 2018; 26: pp. 25-30.




DOI: https://doi.org/10.15421/242516

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 V.A. Kofanov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU