Stability to perturbations of continued fraction approximants and applications

V. Hladun (Lviv Polytechnic National University), https://orcid.org/0000-0002-4337-8869
M. Dmytryshyn (West Ukrainian National University), https://orcid.org/0000-0002-0609-9764

Abstract


The paper investigates the problem of stability to perturbations of continued fraction approximants with complex elements. Unlike the problem of investigating the stability of continued fractions to perturbations, which focuses on the properties of continued fractions, attention is paid to the analysis of the stability to perturbations of their approximants, which have direct practical importance in applied problems. Sufficient conditions for stability to perturbations are obtained in the form of fundamental inequalities for partial numerators. Estimates of relative errors of approximants are proposed, their asymptotic accuracy up to the first order is proved, and the concept of the condition number of the stability problem is introduced. General results are applied to the class of $$$g$$$-fractions, and stability sets in $$${\mathbb R}$$$ and $$${\mathbb C}$$$ are constructed. It is shown that the stability sets depend on the fraction parameters. The given examples demonstrate the accuracy of the obtained estimates and their advantages compared to known results.

Keywords


continued fraction; continued fraction approximant; $$$g$$$-fraction; stability to perturbations; relative error; condition number

MSC 2020


Pri 33C65, Sec 30B70, 32A10, 30B40, 40A99

Full Text:

PDF

References


Akhiezer N.I. The classical moment problem, Oliver & Boyd, 1965.

Antonova T., Dmytryshyn R., Goran V. "On the analytic continuation of Lauricella-Saran hypergeometric function $$$F_K(a_1,a_2,b_1,b_2;a_1,b_2,c_3;\mathbf{z})$$$", Mathematics, 2023; 11(21): 4487. doi:10.3390/math11214487

Antonova T., Dmytryshyn R., Sharyn S. "Generalized hypergeometric function $$${}_3F_2$$$ ratios and branched continued fraction expansions", Axioms, 2021; 10(4): p. 310. doi:10.3390/axioms10040310

Baker G.A, Graves-Morris P. "Padé Approximants", Encyclopedia of Mathematics and its Applications, Cambridge Univ. Press, 1996.

Blanch G. "Numerical evaluation of continued fractions", SIAM Review, 1964; 6: pp. 383-421. doi:10.1137/1006092

Cotan P., Teseleanu G. "Continued fractions applied to a family of RSA-like cryptosystems", Proc. Intern. Conf. Information Security Practice and Experience, Taipei, Taiwan, November 23-25, 2022; 13620. doi:10.1007/978-3-031-21280-2_33

Cuyt A., Petersen V.B., Verdonk B., Waadeland H., Jones W.B. Handbook of continued fractions for special functions, Springer, 2008.

Cuyt A., Van der Cruyssen P. "Rounding error analysis for forward continued fraction algorithms", Comput. Math. Appl., 1985; 11: pp. 541-564. doi:10.1016/0898-1221(85)90037-9

Dmytryshyn M., Hladun V. "On the sets of stability to perturbations of some continued fraction with applications", Symmetry, 2025; 17(9): 1442. doi:10.3390/sym17091442

Dmytryshyn R. "On the analytic continuation of Appell's hypergeometric function $$$F_2$$$ to some symmetric domains in the space $$$\mathbb{C}^2$$$" Symmetry, 2024; 16(11): 1480. doi:10.3390/sym16111480

Dmytryshyn R., Antonova T., Dmytryshyn M. "On the analytic extension of the Horn's confluent function $$$\mathrm{H}_6$$$ on domain in the space $$$\mathbb{C}^2$$$", Constr. Math. Anal., 2024; 7: pp. 11-26. doi:10.33205/cma.1545452

Dmytryshyn R., Cesarano C., Lutsiv I.-A. "On the analytical continuation of the ratio $$$H_4(\alpha,\delta+1;\gamma,\delta;-\mathbf{z})/H_4(\alpha,\delta+2;\gamma,\delta+1;-\mathbf{z})$$$", Res. Math., 2025; 33(2): pp. 65-67. doi:10.15421/242515

Dmytryshyn R., Cesarano C., Lutsiv I.-A., Dmytryshyn M. "Numerical stability of the branched continued fraction expansion of Horn's hypergeometric function $$$H_4$$$", Mat. Stud., 2024; 61(1): pp. 51-60. doi:10.30970/ms.61.1.51-60

Dmytryshyn R., Lutsiv I.-A., Dmytryshyn M. "On the analytic extension of the Horn's hypergeometric function $$$H_4$$$", Carpathian Math. Publ., 2024; 16(1): pp. 32-39. doi:10.15330/cmp.16.1.32-39

Dmytryshyn R., Nyzhnyk I. "On the approximation of Lauricella-Saran's hypergeometric functions $$$F_M$$$ and their ratios by branched continued fractions", Dolomites Res. Notes Approx., 2025; 18(1): pp. 106-117. doi:10.25430/pupj-DRNA-2025-1-9

Gautschi W. Numerical analysis, Birkhäuser, 2012.

Higham N.J. Accuracy and stability of numerical algorithms, SIAM, 2002.

Hladun V.R. "Some sets of relative stability under perturbations of branched continued fractions with complex elements and a variable number of branches", J. Math. Sci., 2016; 215: pp. 11-25. doi:10.1007/s10958-016-2818-x

Hladun V.R., Bodnar D.I., Rusyn R.S. "Convergence sets and relative stability to perturbations of a branched continued fraction with positive elements", Carpathian Math. Publ., 2024; 16(1): pp. 16-31. doi:10.15330/cmp.16.1.16-31

Hladun V.R., Dmytryshyn M.V. "On the stability to perturbations of Stieltjes continued fractions with complex elements", Carpathian Math. Publ., 2025; 17(2): pp. 565-578. doi:10.15330/cmp.17.2.565-578

Hladun V.R., Dmytryshyn M.V., Kravtsiv V.V., Rusyn R.S. "Numerical stability of the branched continued fraction expansions of the ratios of Horn's confluent hypergeometric functions $$$\mathrm{H}_6$$$" Math. Model. Comput., 2024; 11(4): pp. 1152-1166. doi:10.23939/mmc2024.04.1152

Hladun V.R., Hoyenko N.P., Manzij O.S., Ventyk L. "On convergence of function $$$F_4(1, 2; 2, 2; z_1, z_2)$$$ expansion into a branched continued fraction", Math. Model. Comput., 2022; 9(3): pp. 767-778. doi:10.23939/mmc2022.03.767

Hladun V., Kravtsiv V., Dmytryshyn M., Rusyn R. "On numerical stability of continued fractions", Mat. Stud., 2024; 62(2): pp. 168-183. doi:10.30970/ms.62.2.168-183

Hladun V., Rusyn R., Dmytryshyn M. "On the analytic extension of three ratios of Horn's confluent hypergeometric function $$$\mathrm{H}_7$$$", Res. Math., 2024; 32(1): pp. 60-70. doi:10.15421/242405

Jiang R., Zhou T., Yin Y. "The continued fraction structure in physical fractal theory", Fractal Fract., 2025; 9: 475. doi:10.3390/fractalfract9070475

Jin J., Tian J., Yu M., Wu Y., Tang Y. "A novel ultra-short-term wind speed prediction method based on dynamic adaptive continued fraction", Chaos, Solitons & Fractals, 2024; 180: 114532. doi:10.1016/j.chaos.2024.114532

Jones W.B., Thron W.J. "Numerical stability in evaluating continued fractions", Math. Comp., 1974; 28: pp. 795-810. doi:10.2307/2005701

Jones W.B., Thron W.J. Continued fractions: analytic theory and applications, Addison-Wesley Pub. Co., 1980.

Kane A.M. "On the use of continued fractions for electronic cash", Int. J. Comput. Sci., Secur. 2010; 4(1): pp. 136-148.

Kane A.M. "On the use of continued fractions for mutual authentication", Int. J. Inf. Secur. Sci., 2012; 1(3): pp. 88-99.

Lorentzen L., Waadeland H. Continued fractions, Atlantis Press, 2008.

Macon N., Baskervill M. "On the generation of errors in the digital evaluation of continued fractions", J. Assoc. Comput. Math., 1956; 3: pp. 199-202. doi:10.1145/320831.320838

Manziy O., Hladun V., Ventyk L. "The algorithms of constructing the continued fractions for any rations of the hypergeometric Gaussian functions", Math. Model. Comput., 2017; 4(1): pp. 48-58. doi:10.23939/mmc2017.01.048

Moscato P., Ciezak A., Noman N. "Dynamic depth for better generalization in continued fraction regression", Proc. Genetic Evol. Comput. Conf., Lisbon, Portugal, July 15-19, 2023; pp. 520-528. doi:10.1145/3583131.3590461

Moscato P., Haque M.N., Huang K., Sloan J., Corrales de Oliveira J. "Learning to extrapolate using continued fractions: predicting the critical temperature of superconductor materials", Algorithms, 2023; 16(8): 382. doi:10.3390/a16080382

Moscato P., Haque M.N., Moscato A. "Continued fractions and the Thomson problem", Sci. Rep., 2023; 13(1): 7272. doi:10.1038/s41598-023-33744-5

Moscato P., Sun H., Haque M. N. "Analytic continued fractions for regression: a memetic algorith approach", Expert Syst Appl., 2021; 179: 115018. doi:10.1016/j.eswa.2021.115018

Overmars A., Venkatraman S. "Continued fractions applied to the one line factoring algorithm for breaking RSA", J. Cybersecur. Priv., 2024; 4: pp. 41-54. doi:10.3390/jcp4010003

Perron O. Die Lehre von der Kettenbrühen, Teubner, 1957. (in German)

Pillai J.S., Padma T. "The analysis of PQ sequences generated from continued fractions for use as pseudorandom sequences in cryptographic applications", Proc. Int. Conf. Artif. Intel. Evol. Comput. Engin. Syst., Chennai, India, April 22-23, 2015; pp. 633-644. doi:10.1007/978-81-322-2656-7_58

Puri I., Dhurandhar A., Pedapati T., Shanmugam K., Wei D., Varshney K.R. "CoFrNets: interpretable neural architecture inspired by continued fractions", Proc. Conf. Neural Inform. Process. Syst., December 6-12, 2020; pp. 21668-21680.

Sauer T. Continued fractions and signal processing, Springer, 2021.

Shruti I.S., Vijay P.S. "A biological growth model using continued fraction of straight lines. Methodological aspects", Biomath, 2025; 14(2): 2508055. doi:10.55630/j.biomath.2025.08.055

Wall H.S. Analytic Theory of Continued Fractions, Van Nostrand, 1948.

Zhang S., Xiao X. "Global prediction for chaotic time series based on continued fractions", IEEE Int. Symp. Commun. Inform. Tech., Beijing, October 12-14, 2005; pp. 1528-1531. doi:10.1109/ISCIT.2005.1567163




DOI: https://doi.org/10.15421/242525

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 V. Hladun, M. Dmytryshyn

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU