On groups of reversible automata

A.S. Oliynyk (Taras Shevchenko National University of Kyiv), https://orcid.org/0000-0003-0940-7731

Abstract


For any nontrivial finite group $$$\mathbb{X}$$$ we construct a reversible automaton whose state set and alphabet coincide with $$$\mathbb{X}$$$, with transition and output functions defined by the left regular action of $$$\mathbb{X}$$$. We then study the associated automaton group $$$G_{\mathbb{X}}$$$ and prove, in particular, that $$$G_{\mathbb{X}}$$$ contains the lamplighter group $$$\mathbb{A} \wr \mathbb{Z}$$$, where $$$\mathbb{A}$$$ denotes the center of $$$\mathbb{X}$$$.

Keywords


reversible automaton; automaton group; lamplighter group

MSC 2020


Pri 20E08, Sec 20E22, 20E26

Full Text:

PDF

References


Ahmed E., Savchuk D. "The lamplighter group of rank two generated by a bireversible automaton", Comm. Algebra, 2019; 47(8): pp. 3340-3354. doi:10.1080/00927872.2018.1559322

Bartholdi L., Sidki S.N. "Self-similar products of groups", Groups Geom. Dyn., 2020; 14(1): pp. 107-115. doi:10.4171/GGD/536

Bartholdi L., Šunik Z. "Some solvable automaton groups", Contemp. Math., 2006; 394: pp. 11-30. doi:10.1090/conm/394/07431

Bondarenko Ie., D'Angeli D., Rodaro E. "The lamplighter group $$$\mathbb{Z}_3\wr\mathbb{Z}$$$ generated by a bireversible automaton", Comm. Algebra, 2016; 44(12): pp. 5257-5268. doi:10.1080/00927872.2016.1172602

Bondarenko I., Kivva B. "Automaton groups and complete square complexes", Groups Geom. Dyn., 2022; 16: pp. 305-332. doi:10.4171/ggd/649

Dantas A.C., Sidki S.N. "On state-closed representations of restricted wreath product of groups $$$G_{p,d} =C_pwrC^d$$$", J. Algebra, 2018; 500: pp. 335-361. doi:10.1016/j.jalgebra.2017.02.019

Francoeur D. "Bireversible automata generating lamplighter groups", Bull. Lond. Math. Soc., 2023; 55(2): pp. 990-997. doi:10.1112/blms.12772

Glasner Y., Mozes Sh. "Automata and square complexes", Geom. Dedicata, 2005; 111: pp. 43-64. doi:10.1007/s10711-004-1815-2

Grigorchuk R.I. "On Burnside's problem on periodic groups", Funkts. Analis. Prilozh. 1980; 1: pp. 53-54.

Grigorchuk R.I., Nekrashevich V.V., Sushchanskii V.I. "Automata, dynamical systems, and groups", Dynamical systems, automata, and infinite groups, 2000; pp. 128-203.

Grigorchuk R.I., Żuk A. "The lamplighter group as a group generated by a 2-state automaton, and its spectrum", Geom. Dedicata, 2001; 87(1-3): pp. 209-244. doi:10.1023/A:1012061801279

Macedońska O., Nekrashevych V., Sushchansky V. "Commensurators of groups and reversible automata", Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 2000; 12: pp. 36-39.

Nekrashevych V. Self-similar groups, Amer. Math. Soc., 2005.

Nowak P.W., Oliynyk A., Prokhorchuk V. "On reversible automata generating lamplighter groups", J. Algebra, 2025; 661: pp. 578-594. doi:10.1016/j.jalgebra.2024.07.043

Oliynyk A.S., Prokhorchuk V.A. "Amalgamated free product in terms of automata constructions", Comm. Algebra, 2022; 50(2): pp. 740-750. doi:10.1080/00927872.2021.1967965

Savchuk D.M., Sidki S.N. "Affine automorphisms of rooted trees", Geom. Dedicata, 2016; 183: pp. 195-213. doi:10.1007/s10711-016-0154-4

Silva P.V., Steinberg B. "On a class of automata groups generalizing lamplighter groups", Int. J. Algebra Comput., 2005; 15(5-6): pp. 1213-1234. doi:10.1142/S0218196705002761

Skipper R., Steinberg B. "Lamplighter groups, bireversible automata, and rational series over finite rings", Groups Geom. Dyn., 2020; 14(2): pp. 567-589. doi:10.4171/GGD/555




DOI: https://doi.org/10.15421/242528

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 A.S. Oliynyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU