Bernstein type inequalities for splines

V.F. Babenko (Oles Honchar Dnipropetrovsk National University), https://orcid.org/0000-0001-6677-1914
V.A. Zontov (Oles Honchar Dnipropetrovsk National University)

Abstract


New sharp Bernstein type inequalities in the space $$$L_2(\mathbb{R})$$$ for the differences of non-periodic splines of order $$$m$$$ and minimal defect, having equidistant nodes, are obtained.

Keywords


non-periodic splines; B-splines; inequalities of Bernstein type

References



Korneichuk N.P. Exact constants in approximation theory, Nauka, 1987.

Tikhomirov V.M. "Set widths in functional spaces and theory of the best approximations", Uspekhi matem. nauk, 1960; 15(3): pp. 81-120.

Subbotin Yu.N. "On the piecewise-polynomial interpolation", Matem. zametki, 1967; 1(1): pp. 24-29.

Babenko V.F., Pichugov S.A. "Bernstein type inequalities for polynomial splines in $$$L_2$$$ space", Ukrainian Math. J., 1991; 43(3): pp. 420-422.

Korneichuk N.P., Babenko V.F., Ligun A.A. Extremum properties of polynomials and splines, Naukova dumka, 1992.

Magaril-Il'yaev G.G. "On the best approximation of functional classes by splines on the real domain", Trudy matem. inst. rAN, 1992; 194: pp. 148-159.

Babenko V.F., Zontov V.A. "Inequalities of Bernstein type for splines defined on the real domain", Ukrainian Math. J., 2011; 63(5): pp. 603-611.

Babenko V.F., Spektor S.A. "Inequalities of Bernstein type for splines in $$$L_2(\mathbb{R})$$$ space", Res. Math., 2008; 16(6/1): pp. 21-27.

Chui K. Introduction to wavelets, Mir, 2008.




DOI: https://doi.org/10.15421/241203

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2012 V.F. Babenko, V.A. Zontov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU