Spectra of algebras of symmetric analytic functions on Cartesian products of Banach spaces of Lebesgue integrable functions

R.V. Ponomarov (Vasyl Stefanyk Carpathian National University)
T.V. Vasylyshyn (Vasyl Stefanyk Carpathian National University), https://orcid.org/0000-0001-9055-6341

Abstract


The work is devoted to the study of algebras of entire symmetric functions on Cartesian products of real and complex Banach spaces of Lebesgue integrable functions.
For $$$p\in [1;+\infty)$$$, let $$$L_p^{(\mathbb{K})}$$$ be the Banach space over a field $$$\mathbb{K}\in \{\mathbb{R},\mathbb{C}\}$$$ of all $$$\mathbb{K}$$$-valued functions on $$$[0;1]$$$, the $$$p$$$-th powers of absolute values of which are Lebesgue integrable.
Let $$$\Xi_{[0;1]}$$$ be the set of all bijections $$$\sigma:[0;1] \to [0;1]$$$ such that both $$$\sigma$$$ and $$$\sigma^{-1}$$$ are measurable and preserve Lebesgue measure, i.e. $$$\mu(\sigma(E)) = \mu(\sigma^{-1}(E)) = \mu(E)$$$ for every Lebesgue measurable set $$$ E \subset [0;1]$$$, where $$$\mu$$$ is Lebesgue measure.
A function $$$f$$$ on the Cartesian product $$$L_{p_{1}}^{(\mathbb{K})} \times \ldots \times L_{p_{n}}^{(\mathbb{K})}$$$, where $$$p_1,\ldots,p_n \in [1;+\infty)$$$, is called symmetric if $$$f((x_1\circ\sigma;\ldots;x_n\circ\sigma))=f((x_1;\ldots;x_n))$$$ for every $$$\sigma\in \Xi_{[0;1]}$$$ and $$$(x_1;\ldots;x_n)\in L_{p_{1}}^{(\mathbb{K})} \times \ldots \times L_{p_{n}}^{(\mathbb{K})}$$$.
We describe spectra of Fréchet algebras of entire symmetric functions of bounded type on $$$L_{p_{1}}^{(\mathbb{K})} \times \ldots \times L_{p_{n}}^{(\mathbb{K})}$$$. Also we construct some isomorphisms of these algebras.


Keywords


polynomial; entire function; analytic function; symmetric function; algebraic basis; Banach space of Lebesgue integrable functions; Fréchet algebra; spectrum

MSC 2020


Pri 46G20, Sec 46G25

Full Text:

PDF

References


Alencar R., Aron R., Galindo P., Zagorodnyuk A. "Algebra of symmetric holomorphic functions on $$${\ell}_p$$$", Bull. Lond. Math. Soc., 2003; 35: pp. 55-64. doi:10.1112/S0024609302001431

Aron R.M., Cole B.J., Gamelin T.W. "Spectra of algebras of analytic functions on a Banach space", J. Reine Angew. Math., 1991; 415: pp. 51-93.

Aron R.M., Galindo P., Garcia D., Maestre M. "Regularity and algebras of analytic functions in infinite dimensions", Trans. Amer. Math. Soc., 1996; 348: pp. 543-559. doi:10.1090/S0002-9947-96-01553-X

Bochnak J., Siciak J. "Polynomials and multilinear mappings in topological vector spaces", Stud. Math., 1971; 39: pp. 59-75.

Carando D., Dimant V., Rodríguez J.T. "Homomorphisms on algebras of analytic functions on non-symmetrically regular spaces", Math. Zeitschr., 2023; 304: 17. doi:10.1007/s00209-023-03279-6

Chernega I., Galindo P., Zagorodnyuk A. "Some algebras of symmetric analytic functions and their spectra", Proc. Edinb. Math. Soc., 2012; 55: pp. 125-142. doi:10.1017/S0013091509001655

Chernega I., Galindo P., Zagorodnyuk A. "The convolution operation on the spectra of algebras of symmetric analytic functions", J. Math. Anal. Appl., 2012; 395: pp. 569-577. doi:10.1016/j.jmaa.2012.04.087

Chernega I., Galindo P., Zagorodnyuk A. "A multiplicative convolution on the spectra of algebras of symmetric analytic functions", Rev. Mat. Complut., 2014; 27(2): pp. 575-585. doi:10.1007/s13163-013-0128-0

Chernega I.V. "A semiring in the spectrum of the algebra of symmetric analytic functions in the space $$$\ell_1$$$", J. Math. Sci., 2016; 212: pp. 38-45. doi:10.1007/s10958-015-2647-3

Chernega I., Galindo P., Zagorodnyuk A. "On the spectrum of the algebra of bounded-type symmetric analytic functions on $$$\ell_1$$$", Math. Nachr., 2024; 297(10): pp. 3835-3846. doi:10.1002/mana.202300415

García D., Lourenço M.L., Maestre M., Moraes L.A. "The spectrum of analytic mappings of bounded type", J. Math. Anal. Appl., 2000; 245: pp. 447-470. doi:10.1006/jmaa.2000.6762

González M., Gonzalo R., Jaramillo J.A. "Symmetric polynomials on rearrangement-invariant function spaces", J. Lond. Math. Soc., 1999; 59: pp. 681-697. doi:10.1112/S0024610799007164

Halushchak S.I. "Isomorphisms of some algebras of analytic functions of bounded type on Banach spaces", Mat. Stud., 2021; 56: pp. 106-112. doi:10.30970/ms.56.1.106-112

Handera-Kalynovska O.V., Kravtsiv V.V. "The Waring-Girard formulas for symmetric polynomials on spaces $$$\ell_p$$$", Carpathian Math. Publ., 2024; 16: pp. 407-413. doi:10.15330/cmp.16.2.407-413

Martin R.S. Contribution to the theory of functionals: Ph.D. thesis, Univ. California, 1932.

Mujica J. Complex Analysis in Banach Spaces, North Holland, 1986.

Munoz G.A., Sarantopoulos Y., Tonge A. "Complexifications of real Banach spaces, polynomials and multilinear maps", Studia Math., 1999; 134: pp. 1-34.

Nemirovskii A., Semenov S. "On polynomial approximation of functions on Hilbert space", Mat. ussr-Sb., 1973; 21: pp. 255-277. doi:10.1070/SM1973v021n02ABEH002016

Ponomarov R.V., Vasylyshyn T.V. "Symmetric polynomials on Cartesian products of Banach spaces of Lebesgue integrable functions", Carpathian Math. Publ., 2025; 17(2): pp. 483--515. doi:10.15330/cmp.17.2.483-515

Ponomarov R.V., Vasylyshyn T.V. "Algebraic bases of some algebras of polynomials on Banach Spaces", Mat. Stud., 2025; 64(1): pp. 81-91. doi:10.30970/ms.64.1.81-91

Vasylyshyn T. "Symmetric functions on spaces $$$\ell_{p}(\mathbb{R}^{n})$$$ and $$$\ell_{p}(\mathbb{C}^{n})$$$", Carpathian Math. Publ., 2020; 12(1): pp. 5-16. doi:10.15330/cmp.12.1.5-16

Vasylyshyn T. "Algebras of symmetric analytic functions on Cartesian powers of Lebesgue integrable in a power $$$p\in[1,+\infty)$$$ functions", Carpathian Math. Publ., 2021; 13(2): pp. 340-351. doi:10.15330/cmp.13.2.340-351

Vasylyshyn T. "Symmetric analytic functions on the Cartesian power of the complex Banach space of Lebesgue measurable essentially bounded functions on $$$[0,1]$$$", J. Math. Anal. Appl., 2022; 509: 125977. doi:10.1016/j.jmaa.2021.125977

Vasylyshyn T. "Algebras of symmetric and block-symmetric functions on spaces of Lebesgue measurable functions", Carpathian Math. Publ., 2024; 16: pp. 174-189. doi:10.15330/cmp.16.1.174-189

Zagorodnyuk A. "Spectra of algebras of entire functions on Banach spaces", Proc. Amer. Math. Soc., 2006; 134(9): pp. 2559-2569. doi:10.1090/S0002-9939-06-08260-8




DOI: https://doi.org/10.15421/242530

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 R.V. Ponomarov, T.V. Vasylyshyn

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU