Spectra of algebras of symmetric analytic functions on Cartesian products of Banach spaces of Lebesgue integrable functions
Abstract
The work is devoted to the study of algebras of entire symmetric functions on Cartesian products of real and complex Banach spaces of Lebesgue integrable functions.
For $$$p\in [1;+\infty)$$$, let $$$L_p^{(\mathbb{K})}$$$ be the Banach space over a field $$$\mathbb{K}\in \{\mathbb{R},\mathbb{C}\}$$$ of all $$$\mathbb{K}$$$-valued functions on $$$[0;1]$$$, the $$$p$$$-th powers of absolute values of which are Lebesgue integrable.
Let $$$\Xi_{[0;1]}$$$ be the set of all bijections $$$\sigma:[0;1] \to [0;1]$$$ such that both $$$\sigma$$$ and $$$\sigma^{-1}$$$ are measurable and preserve Lebesgue measure, i.e. $$$\mu(\sigma(E)) = \mu(\sigma^{-1}(E)) = \mu(E)$$$ for every Lebesgue measurable set $$$ E \subset [0;1]$$$, where $$$\mu$$$ is Lebesgue measure.
A function $$$f$$$ on the Cartesian product $$$L_{p_{1}}^{(\mathbb{K})} \times \ldots \times L_{p_{n}}^{(\mathbb{K})}$$$, where $$$p_1,\ldots,p_n \in [1;+\infty)$$$, is called symmetric if $$$f((x_1\circ\sigma;\ldots;x_n\circ\sigma))=f((x_1;\ldots;x_n))$$$ for every $$$\sigma\in \Xi_{[0;1]}$$$ and $$$(x_1;\ldots;x_n)\in L_{p_{1}}^{(\mathbb{K})} \times \ldots \times L_{p_{n}}^{(\mathbb{K})}$$$.
We describe spectra of Fréchet algebras of entire symmetric functions of bounded type on $$$L_{p_{1}}^{(\mathbb{K})} \times \ldots \times L_{p_{n}}^{(\mathbb{K})}$$$. Also we construct some isomorphisms of these algebras.
Keywords
MSC 2020
Full Text:
PDFReferences
Alencar R., Aron R., Galindo P., Zagorodnyuk A. "Algebra of symmetric holomorphic functions on $$${\ell}_p$$$", Bull. Lond. Math. Soc., 2003; 35: pp. 55-64. doi:10.1112/S0024609302001431
Aron R.M., Cole B.J., Gamelin T.W. "Spectra of algebras of analytic functions on a Banach space", J. Reine Angew. Math., 1991; 415: pp. 51-93.
Aron R.M., Galindo P., Garcia D., Maestre M. "Regularity and algebras of analytic functions in infinite dimensions", Trans. Amer. Math. Soc., 1996; 348: pp. 543-559. doi:10.1090/S0002-9947-96-01553-X
Bochnak J., Siciak J. "Polynomials and multilinear mappings in topological vector spaces", Stud. Math., 1971; 39: pp. 59-75.
Carando D., Dimant V., Rodríguez J.T. "Homomorphisms on algebras of analytic functions on non-symmetrically regular spaces", Math. Zeitschr., 2023; 304: 17. doi:10.1007/s00209-023-03279-6
Chernega I., Galindo P., Zagorodnyuk A. "Some algebras of symmetric analytic functions and their spectra", Proc. Edinb. Math. Soc., 2012; 55: pp. 125-142. doi:10.1017/S0013091509001655
Chernega I., Galindo P., Zagorodnyuk A. "The convolution operation on the spectra of algebras of symmetric analytic functions", J. Math. Anal. Appl., 2012; 395: pp. 569-577. doi:10.1016/j.jmaa.2012.04.087
Chernega I., Galindo P., Zagorodnyuk A. "A multiplicative convolution on the spectra of algebras of symmetric analytic functions", Rev. Mat. Complut., 2014; 27(2): pp. 575-585. doi:10.1007/s13163-013-0128-0
Chernega I.V. "A semiring in the spectrum of the algebra of symmetric analytic functions in the space $$$\ell_1$$$", J. Math. Sci., 2016; 212: pp. 38-45. doi:10.1007/s10958-015-2647-3
Chernega I., Galindo P., Zagorodnyuk A. "On the spectrum of the algebra of bounded-type symmetric analytic functions on $$$\ell_1$$$", Math. Nachr., 2024; 297(10): pp. 3835-3846. doi:10.1002/mana.202300415
García D., Lourenço M.L., Maestre M., Moraes L.A. "The spectrum of analytic mappings of bounded type", J. Math. Anal. Appl., 2000; 245: pp. 447-470. doi:10.1006/jmaa.2000.6762
González M., Gonzalo R., Jaramillo J.A. "Symmetric polynomials on rearrangement-invariant function spaces", J. Lond. Math. Soc., 1999; 59: pp. 681-697. doi:10.1112/S0024610799007164
Halushchak S.I. "Isomorphisms of some algebras of analytic functions of bounded type on Banach spaces", Mat. Stud., 2021; 56: pp. 106-112. doi:10.30970/ms.56.1.106-112
Handera-Kalynovska O.V., Kravtsiv V.V. "The Waring-Girard formulas for symmetric polynomials on spaces $$$\ell_p$$$", Carpathian Math. Publ., 2024; 16: pp. 407-413. doi:10.15330/cmp.16.2.407-413
Martin R.S. Contribution to the theory of functionals: Ph.D. thesis, Univ. California, 1932.
Mujica J. Complex Analysis in Banach Spaces, North Holland, 1986.
Munoz G.A., Sarantopoulos Y., Tonge A. "Complexifications of real Banach spaces, polynomials and multilinear maps", Studia Math., 1999; 134: pp. 1-34.
Nemirovskii A., Semenov S. "On polynomial approximation of functions on Hilbert space", Mat. ussr-Sb., 1973; 21: pp. 255-277. doi:10.1070/SM1973v021n02ABEH002016
Ponomarov R.V., Vasylyshyn T.V. "Symmetric polynomials on Cartesian products of Banach spaces of Lebesgue integrable functions", Carpathian Math. Publ., 2025; 17(2): pp. 483--515. doi:10.15330/cmp.17.2.483-515
Ponomarov R.V., Vasylyshyn T.V. "Algebraic bases of some algebras of polynomials on Banach Spaces", Mat. Stud., 2025; 64(1): pp. 81-91. doi:10.30970/ms.64.1.81-91
Vasylyshyn T. "Symmetric functions on spaces $$$\ell_{p}(\mathbb{R}^{n})$$$ and $$$\ell_{p}(\mathbb{C}^{n})$$$", Carpathian Math. Publ., 2020; 12(1): pp. 5-16. doi:10.15330/cmp.12.1.5-16
Vasylyshyn T. "Algebras of symmetric analytic functions on Cartesian powers of Lebesgue integrable in a power $$$p\in[1,+\infty)$$$ functions", Carpathian Math. Publ., 2021; 13(2): pp. 340-351. doi:10.15330/cmp.13.2.340-351
Vasylyshyn T. "Symmetric analytic functions on the Cartesian power of the complex Banach space of Lebesgue measurable essentially bounded functions on $$$[0,1]$$$", J. Math. Anal. Appl., 2022; 509: 125977. doi:10.1016/j.jmaa.2021.125977
Vasylyshyn T. "Algebras of symmetric and block-symmetric functions on spaces of Lebesgue measurable functions", Carpathian Math. Publ., 2024; 16: pp. 174-189. doi:10.15330/cmp.16.1.174-189
Zagorodnyuk A. "Spectra of algebras of entire functions on Banach spaces", Proc. Amer. Math. Soc., 2006; 134(9): pp. 2559-2569. doi:10.1090/S0002-9939-06-08260-8
DOI: https://doi.org/10.15421/242530
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 R.V. Ponomarov, T.V. Vasylyshyn

This work is licensed under a Creative Commons Attribution 4.0 International License.











