On $$$L^1$$$-Matrices with Degenerate Spectrum and Weak Convergence in Associated Weighted Sobolev Spaces

P.I. Kogut (Oles Honchar Dnipropetrovsk National University)
T.N. Rudyanova (Dnipropetrovsk State Finance Academy)

Abstract


We study the compactness property of the weak convergence in variable Sobolev spaces of the following sequences $$$\left\{ (A_n,u_n) \in L^1(\Omega; {\mathbb{R}}^{N\times N}) \times W_{A_n}(\Omega; {\Gamma}_D) \right\}$$$, where the squared symmetric matrices $$$A\colon \Omega \rightarrow {\mathbb{R}}^{N\times N}$$$ belong to the Lebesgue space $$$L^1(\Omega; {\mathbb{R}}^{N\times N})$$$ and their eigenvalues may vanish on subdomains of $$$\Omega$$$ with zero Lebesgue measure.

Keywords


matrices with degenerate spectrum; weighted Sobolev space; singular measures; convergence in variable spaces

Full Text:

PDF

References


Chiadò Piat V., Serra Cassano F. "Some remarks about the density of smooth functions in weighted Sobolev spaces", J. Convex Analys., 1994; 2(1): pp. 135-142.

Kogut P.I., Leugering G. "Optimal $$$L^1$$$-Control in Coefficients for Dirichlet Elliptic Problems: $$$H$$$-Optimal Solutions", Zeitschr. Analys. Anwen. (ZAA), 2012; 31(1): pp. 31-53.

Kogut P.I., Leugering G. "Optimal $$$L^1$$$-Control in Coefficients for Dirichlet Elliptic Problems: $$$W$$$-Optimal Solutions", J. Optimiz. Theory Applic. (JOTA), 2011; 150(2): pp. 205-232.


Zhikov V.V. "Weighted Sobolev spaces", Sbornik: Math., 1998; 189(8): pp. 27-58.

Zhikov V.V. "On an extension of the method of two-scale convergence and its applications", Sbornik: Math., 2000; 191(7): pp. 973-1014.




DOI: https://doi.org/10.15421/241219

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2012 P.I. Kogut, T.N. Rudyanova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU