Optimal recovery of convolution of n-functions from various classes by linear information

M.S. Gun'ko (Oles Honchar Dnipropetrovsk National University)

Abstract


We found the optimal information and the optimal method of its use to recover the convolution of n-functions on some convex and centrally-symmetric classes of $$$2\pi$$$-periodic functions.

Keywords


recovery; convolution of n-functions; linear information

References


Mairhuber J.C., Schoenberg I.J., Williamson R.E. "On variation diminishing transformations on the circle", Rend. Circ. mat. Polermo., 1959; 8(2): pp. 241-270.

Karlin S. Total Positivity, Stanford Univ. Press, 1968; Vol. 1.

Pinkus A. "On n-width of periodic functions", J. Anal. Math, 1979; 35: pp. 209-235.


Babenko V.F. "Optimal calculations of convolutions of functions from various classes", Proc. Int. Conf. on Constructive Function Theory (Varna, May 1989), Sofia, 1989; pp. 5-6.

Babenko V.F., Rudenko A.A. "On the optimal renewal of convolutions and scalar products of functions from various classes", Ukrainian Math. J., 1991; 43(10): pp. 1305-1310.

Korneichuk N.P. Splines in approximation theory, Nauka, 1984.

Babenko V.F., Gun'ko M.S. "On the optimal recovery of convolution of n-functions by linear information", Ukrainian Math. J., 2016; 68(5): pp. 579-585.

Babenko V.F. "Approximation of classes of convolutions", Siberian Math. J., 1987; 28(5): pp. 6-21.




DOI: https://doi.org/10.15421/241605

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 M.S. Gun'ko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU